Project description
A new way to investigate anti-nuclei formation
ERC-funded CosmicAntiNuclei will examine the production mechanisms of light nuclei and anti-nuclei in high-energy interactions. Using precision measurements of rare anti-helium production in proton-proton, proton-nucleus and nucleus-nucleus collisions with the ALICE detector at the CERN Large Hadron Collider (LHC), the project will extend the ALICE and LHC physics programme to the astrophysical domain. Specifically, it will systematically and comprehensively target the modelling of light antimatter cluster formation, necessary to predict the expected signal and background rates for dark matter anti-nuclei searches in space-borne and balloon experiments. The project will apply an innovative approach based on the measurement of two-particle correlations to investigate anti-nuclei formation via coalescence in relation to the nucleus wavefunction and the characteristics of the particle emitting source.
Objective
Visible matter constitutes only 5% of the matter-energy content of the Universe, whereas the remaining 95% is constituted by unknown forms of matter (20%) and energy (75%) that appear as ``dark'' to us. In the landscape of Dark Matter searches, antinuclei are a promising, almost background-free smoking gun signal for WIMPs and are a target of indirect dark matter searches.
This project attacks in a systematic and comprehensive way the modelling of light antimatter cluster formation, necessary to predict the expected signal and background rates for dark matter antinuclei searches in space-borne experiments.
The programme is based on precision measurements of rare antihelium production in proton-proton, proton-nucleus and nucleus-nucleus collisions with the ALICE detector at the CERN LHC.
An innovative approach based on the measurement of two-particle correlations will be applied for the first time to investigate experimentally antinuclei formation via coalescence in relation to the nucleus wavefunction and interaction potential. The results of the analysis of the ALICE data will be input for the modelling of antinuclei formation and propagation in the Galaxy. The final goal of the project is to obtain a prediction for the expected cosmic ray antihelium background rate for AMS-02, further enhancing the scientific value of the proposed research programme.
The outcome of this project will shed light on the production mechanisms of light nuclei and antinuclei in high-energy interactions. In addition, it will extend the ALICE and LHC physics programme to the astrophysical domain, with a deep innovative impact in a well-established field of research. It will have direct fundamental applications to indirect dark matter searches with existing (AMS-02) and future (GAPS, AMS-100) experiments, providing relevant input to frontier research in this sector.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
40126 Bologna
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.