Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

The ultimate Time scale in Organic Molecular opto-electronics, the ATTOsecond

Descripción del proyecto

Capturar la dinámica ultrarrápida de los electrones para mejorar la eficacia de la conversión de la energía solar

La generación de corrientes eléctricas que alimenten las actividades humanas de forma limpia y sostenible es una prioridad absoluta para la humanidad. En este sentido, conocer los entresijos de los procesos de transferencia fotoinducida de los electrones y la carga en la materia orgánica es fundamental para mejorar la eficacia de la conversión energética en los dispositivos de energía solar. Dado que las primeras etapas de estos procesos se producen en escalas de tiempo ultrarrápidas (attosegundos), su acceso es bastante difícil desde un punto de vista técnico. El objetivo del proyecto TOMATTO, financiado con fondos europeos, es profundizar en este problema gracias a los avances en la attociencia y la síntesis orgánica y al apoyo de la modelización informática.

Objetivo

Photoinduced electron transfer (ET) and charge transfer (CT) processes occurring in organic materials are the cornerstone of technologies aiming at the conversion of solar energy into electrical energy and at its efficient transport. Thus, investigations of ET/CT induced by visible (VIS) and ultraviolet (UV) light are fundamental for the development of more efficient organic opto-electronic materials. The usual strategy to improve efficiency is chemical modification, which is based on chemical intuition and try-and-error approaches, with no control on the ultrafast electron dynamics induced by light. Achieving the latter is not easy, as the natural time scale for electronic motion is the attosecond (10-18 seconds), which is much shorter than the duration of laser pulses produced in femtochemistry laboratories. With femtosecond pulses, one can image and control “slower” processes, such as isomerization, nuclear vibrations, hydrogen migration, etc., which certainly affect ET and CT at “longer” time scales. However, real-time imaging of electronic motion is possibly the only way to fully understand and control the early stages of ET and CT, and by extension the coupled electron-nuclear dynamics that come later and lead (or not) to an efficient electric current. In this project we propose to overcome the fs time-scale bottleneck and get direct information on the early stages of ET/CT generated by VIS and UV light absorption on organic opto-electronic systems by extending the tools of attosecond science beyond the state of the art and combining them with the most advanced methods of organic synthesis and computational modelling. The objective is to provide clear-cut movies of ET/CT with unprecedented time resolution and with the ultimate goal of engineering the molecular response to optimize the light driven processes leading to the desired opto-electronic behavior. To this end, synergic efforts between laser physicists, organic chemists and theoreticians is compulsory.

Régimen de financiación

ERC-SyG - Synergy grant

Institución de acogida

FUNDACION IMDEA NANOCIENCIA
Aportación neta de la UEn
€ 2 133 375,00
Dirección
CALLE FARADAY 9 CIUDAD UNIVERSITARIA DE CANTOBLANCO
28049 Madrid
España

Ver en el mapa

Región
Comunidad de Madrid Comunidad de Madrid Madrid
Tipo de actividad
Research Organisations
Enlaces
Coste total
€ 2 133 375,00

Beneficiarios (4)