Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Novel Materials Discovery

CORDIS provides links to public deliverables and publications of HORIZON projects.

Links to deliverables and publications from FP7 projects, as well as links to some specific result types such as dataset and software, are dynamically retrieved from OpenAIRE .

Deliverables

Report on the ASE-FireWorks workshop (opens in new window)

The report will contain a description of scientific program and the main outcome of the workshop. Based on feedback from the participants (users of the ASE-FireWorks workflows) we will also provide an analysis of where future work on LibFlow-X should be focused to ensure the best service for the community.

Researcher-exchange, workshop and summer-schools report (opens in new window)

This document reports on the academic workshops, researcher-exchange, summer schools and hackathons, described in Task 1, 2, 3 and 4 of WP12. The report will include the description of the presentations and tutorial training materials; the report will also briefly describe the feedback from the participants.

Final report, documentation and software release on Green-X, for RPA, GW and EPC (opens in new window)

The report will complete the report D2.1, and describe the final product, its testing, and its availability.

Evaluation of mini-apps in pre-exascale architectures (opens in new window)

The suite of mini-apps will be executed and analysed in the availablepre-exascle architectures at BSC, CSC and MPG. The deliverable will be aperformance report on the studied architectures including withrecommendations for hardware industry and code developers.

Report and documentation of scalable data infrastructure with deployment on multiple sites; data replication and synchronisation (opens in new window)

Documentation of the all developed and implemented data infrastructure components. This also addresses that the infrastructure allows distributed deployment, the functionality to replicate and synchronize data between deployments, and the multiple-site properties.

Report on industry workshops (opens in new window)

This report summarizes, analyzes and comments upon the two industry workshops, with particular focus on (a) impact and value of the CoE for industry: whether and how the CoE meets industrial needs; (b) feedback from industry on how the CoE could be made more valuable to them.

Report on applications of DNNs for dimensionality reduction in materials systems; of kernel learning to dimensional reduction in materials; of descriptor discovery to materials systems; and user-guided interactive force-field generation using kernel metho (opens in new window)

Report on applications of (i) high-accuracy prediction of extensive and intensive materials properties with distributed DNN, (ii) active-learning-driven interatomic force-field generation using kernel methods, and (iii) descriptor discovery for complex materials properties with SGD and SISSO.

Report and documentation of finalized enhanced releases of Libxc-X and ELPA-X for DFT for exascale architectures (opens in new window)

Report on the performed optimization of ELPA-X as well as on the achieved improvements. Both single node usage efficiency as well as usability on higher number of nodes should be addressed. Provide the final, fully enhanced version of ELPA-X. Furthermore, the final, fully enhanced version of Libxc-X will be provided, featuring improved non-local operator evaluation and reference implementations of the basis set transformation for each code family. For both ELPA-X and of Libxc-X, porting to essential next generation supercomputers will have been performed, and results on the co-development with respect to DFT codes will be reported.

CSA engagement report - activities, results, analysis (opens in new window)

This report will detail our collaboration with the Focus CoE on training and industry outreach, including an analysis of the effectiveness.

Report and documentation of validated workflows for beyond DFT calculations in LibFlow-X (opens in new window)

This report describes the workflow implemented in LibFlow-X for RPA, MP2, CC, and GW calculations. The report will also include a detailed documentation of the input parameters for controlling the workflows and of the output produced by these workflows. A series of examples validating the workflows will be provided and described in detail.

Report and documentation of CC4S-X and CTF-X including block-sparse tensors (opens in new window)

Report describing the additional support for block-sparse tensors in CC4S calculations to fully account for the translational symmetry of periodic crystals. Test of the implementation will be described for a prototypical periodic system.

Report and documentation of running baseline infrastructure with storage, automated processing, and basic search for common meta-data (opens in new window)

Description of implementation of the data infrastructure that allows human users (GUI) and computer programs (API) to upload data, automatically process data, search based on a subset of common pre-defined metadata, download raw-data and download archive data in a common code-independent format.

Report on industry training (opens in new window)

This document reports on summer schools described in Task 2 of WP10. The core of this report is the presentations and tutorial training materials. The report also briefly describes the feedback from the participants and suggestions for the final workshop.

Data management plan (opens in new window)

This plan outlines what data will be generated by the project; its format and scope; how and where it will be stored, backed up, curated and preserved (where appropriate); any protection or security it requires; how it will be shared in the future in any open data repository; and any conditions for access.

Website (updated throughout the project) (opens in new window)

The project website, with its associated Twitter feed, YouTube channel, and facebook page, is the online ‘shop window’ of the project. It will summarize the key parts of NOMAD (project aims, project team, approach and science, newsletters, publications of the team, etc.); it will be updated on an ongoing basis, with news and information on project developments and activities.

Report and documentation of NOMAD CoE AI-X Toolkit: JupyterHub based implementation of the near-real-time data HPAI methods developed in WP6 (opens in new window)

Final report and documentation of the following aspects: a) The data infrastructure includes a JupyterHub deployment localized close to archive storage (same data centre) and b) notebooks implementing the HPAI methods of WP6 can be run on this JupyterHUB.

Report and documentation of codes and frameworks of DNN, exascale kernel methods and exascale SISSO and SGD (opens in new window)

Description of codes and documentation for software frameworks of distributed DNN, towards-exascale kernel methods and towards-exascale SISSO and SGD. The frameworks will enable near-real-time, interactive analysis of data in the NOMAD Archive.

Dissemination materials (brochure, flyer, posters, newsletters) (opens in new window)

A brochure, flyer and poster will be produced during the first 12 months of the project, in order to have resources for distribution at conferences, meetings, industry briefings, etc. The poster may be displayed at the groups of the beneficiaries. The newsletters will be produced at M18, M30 and M42, and will primarily describe the progress of the project during the relevant year. It should address an audience like the second shell and the Psi-k community.

Publications

optimade-python-tools: a Python library for serving and consuming materials data via OPTIMADE APIs (opens in new window)

Author(s): M. L. Evans, C. W. Andersen, S. Dwaraknath, M. Scheidgen, Á. Fekete, and D. Winston
Published in: Journal of Open Source Software, Issue 6(65), 2021, Page(s) 3458, ISSN 2475-9066
Publisher: creative commons
DOI: 10.21105/joss.03458

Shift current photovoltaic efficiency of 2D materials (opens in new window)

Author(s): Thomas Pedersen, Mikkel Sauer, Alireza Taghizadeh, Urko Holguin, Martin Ovesen, Kristian Thygesen, Thomas Olsen, Horia Cornean
Published in: ResearchSquare, 2022, ISSN 2693-5015
Publisher: ResearchSquare
DOI: 10.21203/rs.3.rs-2158047/v1

Optimal data generation for machine learned interatomic potentials (opens in new window)

Author(s): Connor Allen, Albert P. Bartók
Published in: ArXiv.org, 2022, ISSN 2331-8422
Publisher: ArXiv.org
DOI: 10.48550/arxiv.2207.11828

NOMAD: A distributed web-based platform for managing materials science research data (opens in new window)

Author(s): Scheidgen et al.
Published in: Journal of Open Source Software, Issue 8, 2023, ISSN 2475-9066
Publisher: Journal of Open Source Software
DOI: 10.21105/joss.05388

Absorption versus Adsorption: High-Throughput Computation of Impurities in 2D Materials (opens in new window)

Author(s): Joel Davidsson, Fabian Bertoldo, Kristian S. Thygesen, Rickard Armiento
Published in: ArXiv.org, 2022, ISSN 2331-8422
Publisher: ArXiv.org
DOI: 10.48550/arxiv.2207.05353

Data-driven discovery of novel 2D materials by deep generative models (opens in new window)

Author(s): Peder Lyngby, Kristian Sommer Thygesen
Published in: ArXiv.org, 2022, ISSN 2331-8422
Publisher: ArXiv.org
DOI: 10.48550/arxiv.2206.12159

Atomic Simulation Recipes: A Python framework and library for automated workflows. (opens in new window)

Author(s): M. Gjerding, T. Skovhus, A. Rasmussen, F. Bertoldo, A. H. Larsen, J. J. Mortensen, K. S. Thygesen
Published in: Computational Materials Science, Issue 199, 2021, Page(s) 110731, ISSN 0927-0256
Publisher: Elsevier BV
DOI: 10.1016/j.commatsci.2021.110731

Interpretability of machine-learning models in physical sciences.Challenges and perspectives for interoperability and reuse of heterogenous data collectionsLearning Rules for Materials Properties and Functions (opens in new window)

Author(s): Luca M. Ghiringhelli, Draxl, M. Kuban, S. Rigamonti, M. Scheidgen, M. Boley and M. Scheffler
Published in: Roadmap on Machine Learning in Electronic Structure, Issue 4, 2022, Page(s) 023004, ISSN 2516-1075
Publisher: IOP
DOI: 10.1088/2516-1075/ac572f

Adaptively compressed exchange in the linearized augmented plane wave formalism (opens in new window)

Author(s): D. Zavickis, K. Kacars, J. Cīmurs, and A. Gulans
Published in: Phys. Rev. B, Issue 24699950, 2022, Page(s) 165101, ISSN 2469-9950
Publisher: APS
DOI: 10.48550/arxiv.2201.10914

Recent advances in the SISSO method and their implementation in the SISSO++ code (opens in new window)

Author(s): Thomas A. R. Purcell, Matthias Scheffler, Luca M. Ghiringhelli
Published in: arxiv.org, 2023, ISSN 2331-8422
Publisher: arxiv.org
DOI: 10.48550/arxiv.2305.01242

GIMS: Graphical Interface for Materials Simulations (opens in new window)

Author(s): S. Kokott, I. Hurtado, C. Vorwerk, C. Draxl, V. Blum, and M. Scheffler
Published in: Journal of Open Source Software, Issue 6(57), 2021, Page(s) 2767, ISSN 2475-9066
Publisher: NumFOCUS / Open Source Initiative
DOI: 10.21105/joss.02767

All-electron periodic G0W0 implementation with numerical atomic orbital basis functions: algorithm and benchmarks (opens in new window)

Author(s): Xinguo Ren; Florian Merz; Hong Jiang; Yi Yao; Yi Yao; Markus Rampp; Hermann Lederer; Volker Blum; Matthias Scheffler
Published in: Phys. Rev. Materials, Issue 5, 2021, Page(s) 013807, ISSN 2475-9953
Publisher: American Physical Society
DOI: 10.1103/physrevmaterials.5.013807

Sensitivity and Dimensionality of Atomic Environment Representations used for Machine Learning Interatomic Potentials (opens in new window)

Author(s): B. Onat, C. Ortner and J. R. Kermode
Published in: J. Chem. Phys., Issue 153, 2020, Page(s) 144106, ISSN 0021-9606
Publisher: American Institute of Physics
DOI: 10.48550/arxiv.2006.01915

OPTIMADE, an API for exchanging materials data (opens in new window)

Author(s): Andersen, Casper W.; Armiento, Rickard; Blokhin, Evgeny; Conduit, Gareth J.; Dwaraknath, Shyam; Evans, Matthew L.; Fekete, Ádám; Gopakumar, Abhijith; Gražulis, Saulius; Merkys, Andrius; Mohamed, Fawzi; Oses, Corey; Pizzi, Giovanni; Rignanese, Gian-Marco; Scheidgen, Markus; Talirz, Leopold; Toher, Cormac; Winston, Donald; Aversa, Rossella; Choudhary, Kamal; Colinet, Pauline; Curtarolo, Stefano;
Published in: Scientific Data, Issue Vol 8, Iss 1, 2021, Page(s) 1-10, ISSN 2052-4463
Publisher: Springer Nature
DOI: 10.1038/s41597-021-00974-z

Critical assessment of G0W0 calculations for 2D materials: the example of monolayer MoS2 (opens in new window)

Author(s): Rodrigues Pela, R., Vona, C., Lubeck, S. et al.
Published in: npj Comput Mater, Issue 10, 2024, ISSN 2057-3960
Publisher: Nature
DOI: 10.1038/s41524-024-01253-2

On the Uncertainty Estimates of Equivariant-Neural-Network-Ensembles Interatomic Potentials (opens in new window)

Author(s): Shuaihua Lu, Luca M. Ghiringhelli, Christian Carbogno, Jinlan Wang, Matthias Scheffler
Published in: arxiv.org, 2023, ISSN 2331-8422
Publisher: arxiv.org
DOI: 10.48550/arxiv.2309.00195

Ab initio approach for thermodynamic surface phases with full consideration of anharmonic effects – the example of hydrogen at Si(100) (opens in new window)

Author(s): Y. Zhou, C. Zhu, M. Scheffler, and L. M. Ghiringhelli
Published in: Physical Review Letters, Issue 00319007, 2022, Page(s) 246101, ISSN 0031-9007
Publisher: American Physical Society
DOI: 10.48550/arxiv.2202.01193

Ab initio property characterisation of thousands of previously unknown 2D materials (opens in new window)

Author(s): Peder Lyngby, Kristian Sommer Thygesen
Published in: arxiv.org, 2024, ISSN 2331-8422
Publisher: arxiv.org
DOI: 10.48550/arxiv.2402.02783

The FHI-aims Code: All-electron, ab initio materials simulations towards the exascale (opens in new window)

Author(s): Volker Blum, Mariana Rossi, Sebastian Kokott, Matthias Scheffler
Published in: ArXiv.org, 2022, ISSN 2331-8422
Publisher: ArXiv.org
DOI: 10.48550/arxiv.2208.12335

Learning design rules for selective oxidation catalysts from high-throughput experimentation and artificial intelligence. (opens in new window)

Author(s): L. Foppa, C. Sutton, L. M. Ghiringhelli, S. De, P. Löser, S.A. Schunk, A. Schäfer, and M. Scheffler
Published in: ACS Catalysis, Issue 12, 2022, Page(s) 2223, ISSN 2155-5435
Publisher: American Chemical Society
DOI: 10.1021/acscatal.1c04793

Electronic Properties of Functionalized Diamanes for Field-Emission Displays (opens in new window)

Author(s): Christian Tantardini*, Alexander G. Kvashnin*, Maryam Azizi, Xavier Gonze*, Carlo Gatti, Tariq Altalhi, and Boris I. Yakobson*
Published in: ACS Appl. Mater. Interfaces, Issue 15, 2023, ISSN 1944-8244
Publisher: American Chemical Society
DOI: 10.1021/acsami.3c01536

Benchmark of GW Methods for Core-Level Binding Energies (opens in new window)

Author(s): J. Li, Y. Jin, P. Rinke, W. Yang, D. Golze
Published in: J. Chem. Theory Comput., 2022, ISSN 1549-9618
Publisher: American Chemical Society
DOI: 10.1021/acs.jctc.2c00617

Equivariant analytical mapping of first principles Hamiltonians to accurate and transferable materials models (opens in new window)

Author(s): L. Zhang, B. Onat, G. Dusson, G. Anand, R. J. Maurer, C. Ortner, and J.R. Kermode
Published in: npj Comp. Mater., Issue 20573960, 2022, Page(s) 158, ISSN 2057-3960
Publisher: npj Comp. Mater.
DOI: 10.48550/arxiv.2111.13736

Developments and applications of the OPTIMADE API for materials discovery, design, and data exchange (opens in new window)

Author(s): Matthew L. Evans, Johan Bergsma, Andrius Merkys, Casper W. Andersen, Oskar B. Andersson, Daniel Beltrán, Evgeny Blokhin, Tara M. Boland, Rubén Castañeda Balderas, Kamal Choudhary, Alberto Díaz Díaz, Rodrigo Domínguez García, Hagen Eckert, Kristjan Eimre, María Elena Fuentes Montero, Adam M. Krajewski, Jens Jørgen Mortensen, José Manuel Nápoles Duarte, Jacob Pietryga, Ji Qi, Felipe de Je
Published in: arxiv.org, 2024, ISSN 2331-8422
Publisher: arxiv.org
DOI: 10.48550/arxiv.2402.00572

Robust model benchmarking and bias-imbalance in data-driven materials science: a case study on MODNet (opens in new window)

Author(s): Pierre-Paul De Breuck; Matthew Evans; Gian-Marco Rignanese
Published in: Journal of Physics: Condensed Matter, Issue 33, 2021, Page(s) 404002, ISSN 0953-8984
Publisher: Institute of Physics Publishing
DOI: 10.1088/1361-648x/ac1280

Advancing Critical Chemical Processes for a Sustainable Future: Challenges for Industry and the Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT) (opens in new window)

Author(s): Michael Bowker, Serena DeBeer, Nicholas F. Dummer, Graham J. Hutchings, Matthias Scheffler, Ferdi Schüth, Stuart H. Taylor, Harun Tüysüz
Published in: Angewandte Chemie., Issue e202209016, 2022, ISSN 1433-7851
Publisher: John Wiley & Sons Ltd.
DOI: 10.1002/ange.202209016

Materials Genes of Heterogeneous Catalysis from Clean Experiments and Artificial Intelligence (opens in new window)

Author(s): Lucas Foppa; Luca Ghiringhelli; Frank Girgsdies; Maike Hashagen; Pierre Kube; Michael Hävecker; Spencer J. Carey; Andrey Tarasov; Peter Kraus; Frank Rosowski; Robert Schlögl; Annette Trunschke; Matthias Scheffler
Published in: MRS Bulletin, Issue 46, 2021, Page(s) 1-11, ISSN 0883-7694
Publisher: Materials Research Society
DOI: 10.1557/s43577-021-00165-6

CELL: a Python package for cluster expansion with a focus on complex alloys (opens in new window)

Author(s): Santiago Rigamonti, Maria Troppenz, Martin Kuban, Axel Hübner, Claudia Draxl
Published in: arXiv.org, 2023, ISSN 2331-8422
Publisher: arxiv.org
DOI: 10.48550/arxiv.2310.18223

Representing individual electronic states for machine learning GW band structures of 2D materials (opens in new window)

Author(s): N. R. Knosgaard and K. S. Thygesen
Published in: Nature Communications, Issue 13, 2022, Page(s) 468, ISSN 2041-1723
Publisher: Nature Publishing Group
DOI: 10.1038/s41467-022-28122-0

Data-centric heterogeneous catalysis: identifying rules and materials genes of alkane selective oxidation (opens in new window)

Author(s): Lucas Foppa, Frederik Rüther, Michael Geske, Gregor Koch, Frank Girgsdies, Pierre Kube, Spencer Carey, Michael Hävecker, Olaf Timpe, Andrey Tarasov, Matthias Scheffler, Frank Rosowski, Robert Schlögl, and Annette Trunschke
Published in: ChemRxiv, 2022, ISSN 2573-2293
Publisher: ChemRxiv
DOI: 10.26434/chemrxiv-2022-xmg75

Towards fully automatized GW band structure calculations: What we can learn from 60.000 self-energy evaluations. (opens in new window)

Author(s): A. Rasmussen, T. Deilmann, and K. S. Thygesen
Published in: npj Computational Materials, Issue 7(22), 2021, Page(s) 1-9, ISSN 2057-3960
Publisher: Nature Publishing Group
DOI: 10.1038/s41524-020-00480-7

High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers. (opens in new window)

Author(s): Pakdel, S., Rasmussen, A., Taghizadeh, A. et al.
Published in: Nat Commun, Issue 15, 2024, ISSN 2041-1723
Publisher: Nature Publishing Group
DOI: 10.1038/s41467-024-45003-w

Computational exfoliation of atomically thin 1D materials with application to Majorana bound states (opens in new window)

Author(s): H. Moustafa, P.M. Larsen, M.N. Gjerding, J.J. Mortensen, K.S. Thygesen, K.W. Jacobsen
Published in: ArXiv.org, 2022, ISSN 2331-8422
Publisher: ArXiv.org
DOI: 10.48550/arxiv.2204.00472

Materials Genes of CO2 Hydrogenation on Supported Cobalt Catalysts: An Artificial Intelligence Approach Integrating Theoretical and Experimental Data (opens in new window)

Author(s): Ray Miyazaki*, Kendra S Belthle, Harun Tüysüz, Lucas Foppa*, and Matthias Scheffler
Published in: J. Am. Chem. Soc., 2024, ISSN 0002-7863
Publisher: American Chemical Society
DOI: 10.1021/jacs.3c12984

Advancing descriptor search in materials science: feature engineering and selection strategies (opens in new window)

Author(s): B. Hoock, S. Rigamonti, and C. Draxl
Published in: New J. Phys., Issue 24, 2022, Page(s) 113049, ISSN 1367-2630
Publisher: Institute of Physics Publishing
DOI: 10.1088/1367-2630/aca49c

A simple denoising approach to exploit multi-fidelity data for machine learning materials properties (opens in new window)

Author(s): Liu, X., De Breuck, PP., Wang, L. et al.
Published in: npj Comput Mater, Issue 8, 2022, ISSN 2057-3960
Publisher: Nature
DOI: 10.1038/s41524-022-00925-1

From Prediction to Action: Critical Role of Performance Estimation for Machine-Learning-Driven Materials Discovery (opens in new window)

Author(s): Mario Boley, Felix Luong, Simon Teshuva, Daniel F Schmidt, Lucas Foppa, Matthias Scheffler
Published in: arXiv.org, 2023, ISSN 2331-8422
Publisher: arXiv.org
DOI: 10.48550/arxiv.2311.15549

Quantum point defects in 2D materials: The QPOD database (opens in new window)

Author(s): Fabian Bertoldo, Sajid Ali, Simone Manti, Kristian S. Thygesen
Published in: npj Comput Mater, Issue 8, 2021, Page(s) 56, ISSN 2057-3960
Publisher: npj Computational Materials
DOI: 10.48550/arxiv.2110.01961

ACEpotentials.jl: A Julia Implementation of the Atomic Cluster Expansion (opens in new window)

Author(s): William C. Witt, Cas van der Oord, Elena Gelžinytė, Teemu Järvinen, Andres Ross, James P. Darby, Cheuk Hin Ho, William J. Baldwin, Matthias Sachs, James Kermode, Noam Bernstein, Gábor Csányi, Christoph Ortner
Published in: arXiv.org, 2023, ISSN 2331-8422
Publisher: arxiv.org
DOI: 10.48550/arxiv.2309.03161

Self-interaction corrected SCAN functional for molecules and solids in the numeric atom-center orbital framework (opens in new window)

Author(s): Sheng Bi, Christian Carbogno, Igor Ying Zhang, Matthias Scheffler
Published in: arxiv.org, 2024, ISSN 2331-8422
Publisher: arxiv.org
DOI: 10.48550/arxiv.2401.11696

Indirect Band Gap Semiconductors for Thin-Film Photovoltaics: High-Throughput Calculation of Phonon-Assisted Absorption (opens in new window)

Author(s): Jiban Kangsabanik, Mark Kamper Svendsen, Alireza Taghizadeh, Andrea Crovetto, and Kristian S. Thygesen
Published in: J. Am. Chem. Soc., Issue 144, 2022, Page(s) 19872, ISSN 1520-5126
Publisher: ACS Publications
DOI: 10.1021/jacs.2c07567

Many-core acceleration of the first-principles all-electron quantum perturbation calculations (opens in new window)

Author(s): H. Shang, X. Duan, F. Li, L. Zhang, Z. Xu, K. Liu, H. Luo, Y. Ji, W. Zhao, W. Xue, L. Chen, and Y. Zhang
Published in: Computer Physics Communications, Issue 00104655, 2021, Page(s) 108045, ISSN 0010-4655
Publisher: Elsevier BV
DOI: 10.1016/j.cpc.2021.108045

Leveraging genetic algorithms to maximise the predictive capabilities of the SOAP descriptor (opens in new window)

Author(s): Trent Barnard, Steven Tseng, James P. Darby, Albert P. Bartók, Anders Broo and Gabriele C. Sosso
Published in: Molecular Systems Design & Engineering, 2022, ISSN 2058-9689
Publisher: Royal Society of Chemistry
DOI: 10.1039/d2me00149g

TCMI: a non-parametric mutual-dependence estimator for multivariate continuous distributions. (opens in new window)

Author(s): Regler, B., Scheffler, M. & Ghiringhelli, L.M
Published in: Data Min Knowl Disc, Issue 36, 2022, ISSN 1573-756X
Publisher: Springer Nature
DOI: 10.1007/s10618-022-00847-y

Towards a Multi-Objective Optimization of Subgroups for the Discovery of Materials with Exceptional Performance (opens in new window)

Author(s): Lucas Foppa, Matthias Scheffler
Published in: arXiv.org, 2023, ISSN 2331-8422
Publisher: arxiv.org
DOI: 10.48550/arxiv.2311.10381

Interpretable Machine Learning for Materials Design. (opens in new window)

Author(s): J. Dean, M. Scheffler, T. A. R. Purcell, S. V. Barabash, R. Bhowmik, T. Bazhirov
Published in: Journal of Materials Research, Issue 38, 2023, ISSN 2044-5326
Publisher: Springer Nature
DOI: 10.1557/s43578-023-01164-w

Tensor-reduced atomic density representations (opens in new window)

Author(s): James P. Darby, Dávid P. Kovács, Ilyes Batatia, Miguel A. Caro, Gus L. W. Hart, Christoph Ortner, Gábor Csányi
Published in: ArXiv.org, 2022, ISSN 2331-8422
Publisher: ArXiv.org
DOI: 10.48550/arxiv.2210.01705

Shared Metadata for Data-Centric Materials Science (opens in new window)

Author(s): L.M. Ghiringhelli et al.
Published in: ArXiv.org, 2022, ISSN 2331-8422
Publisher: ArXiv.org
DOI: 10.48550/arxiv.2205.14774

Limits to Hole Mobility and Doping in Copper Iodide (opens in new window)

Author(s): Joe Willis, Romain Claes, Qi Zhou, Matteo Giantomassi, Gian-Marco Rignanese, Geoffroy Hautier*, and David O. Scanlon*
Published in: Chem. Mater., Issue 35, 2023, ISSN 0897-4756
Publisher: American Chemical Society
DOI: 10.1021/acs.chemmater.3c01628

Identifying Outstanding Transition‑Metal‑Alloy Heterogeneous Catalysts for the Oxygen Reduction and Evolution Reactions via Subgroup Discovery (opens in new window)

Author(s): Foppa, Lucas; Ghiringhelli, Luca M.
Published in: Topics in Catalysis, 2021, Page(s) 1-11, ISSN 1022-5528
Publisher: Baltzer Science Publishers B.V.
DOI: 10.1007/s11244-021-01502-4

Fermionic Quantum Turbulence: Pushing the Limits of High-Performance Computing (opens in new window)

Author(s): Gabriel Wlazlowski, Michael McNeil Forbes, Saptarshi Rajan Sarkar, Andreas Marek, Maciej Szpindler
Published in: arXiv.org, 2024, ISSN 2331-8422
Publisher: arxiv.org
DOI: 10.48550/arxiv.2310.03341

Similarity of materials and data-quality assessment by fingerprinting (opens in new window)

Author(s): M. Kuban, S. Gabaj, W. Aggoune, C. Vona, S. Rigamonti, and C. Draxl
Published in: MRS Bulletin Impact, Issue 08837694, 2022, Page(s) 1, ISSN 0883-7694
Publisher: Materials Research Society
DOI: 10.48550/arxiv.2204.04056

Interface to high-performance periodic coupled-cluster theory calculations with atom-centered, localized basis functions (opens in new window)

Author(s): E. Moerman, F. Hummel, A. Grüneis, A. Irmler, M. Scheffler
Published in: Journal of Open-Source Software, Issue 24759066, 2022, Page(s) 4040, ISSN 2475-9066
Publisher: Journal of Open-Source Software
DOI: 10.21105/joss.04040

Benchmarking the accuracy of the separable resolution of the identity approach for correlated methods in the numeric atom-centered orbitals framework (opens in new window)

Author(s): Francisco A. Delesma, Moritz Leucke, Dorothea Golze, Patrick Rinke
Published in: arXiv.org, 2024, ISSN 2331-8422
Publisher: arxiv.org
DOI: 10.48550/arxiv.2310.11058

Time-frequency component of the GreenX library: minimax grids for efficient RPA and GW calculations (opens in new window)

Author(s): Azizi, Maryam; Wilhelm, Jan; Golze, Dorothea; Giantomassi, Matteo; Panadés-Barrueta, Ramón L; Delesma, Francisco A; Buccheri, Alexander; Gulans, Andris; Rinke, Patrick; Draxl, Claudia; Gonze, Xavier
Published in: Journal of Open Source Software, Issue 8, 2023, Page(s) 5570, ISSN 2475-9066
Publisher: Journal of Open Source Software
DOI: 10.21105/joss.05570

Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning (opens in new window)

Author(s): Langer, M.F., Goeßmann, A. & Rupp, M.
Published in: npj Comput Mater, Issue 8, 2022, ISSN 2057-3960
Publisher: Nature
DOI: 10.1038/s41524-022-00721-x

FAIR data enabling new horizons for materials research (opens in new window)

Author(s): M. Scheffler, M. Aeschlimann, M. Albrecht, T. Bereau, H.-J. Bungartz, C.Felser, M. Greiner, A. Groß, C. Koch, K. Kremer, W. E. Nagel, M- Scheidgen, C. Wöll, and C. Draxl
Published in: Nature, Issue 00280836, 2022, Page(s) 635, ISSN 0028-0836
Publisher: Nature Publishing Group
DOI: 10.48550/arxiv.2204.13240

Accurate and efficient treatment of spin-orbit coupling via second variation employing local orbitals (opens in new window)

Author(s): Cecilia Vona, Sven Lubeck, Hannah Kleine, Andris Gulans, and Claudia DraxlCecilia Vona, Sven Lubeck, Hannah Kleine, Andris Gulans, and Claudia Draxl
Published in: Phys. Rev. B, Issue 108, 2023, ISSN 2469-9950
Publisher: APS
DOI: 10.1103/physrevb.108.235161

Roadmap on Electronic Structure Codes in the Exascale Era (opens in new window)

Author(s): Vikram Gavini, Stefano Baroni, Volker Blum, David R. Bowler, Alexander Buccheri, James R. Chelikowsky, Sambit Das, William Dawson, Pietro Delugas, Mehmet Dogan, Claudia Draxl, Giulia Galli, Luigi Genovese, Paolo Giannozzi, Matteo Giantomassi, Xavier Gonze, Marco Govoni, Andris Gulans, François Gygi, John M. Herbert, Sebastian Kokott, Thomas D. Kühne, Kai-Hsin Liou, Tsuyoshi Miyazaki, Phani Motam
Published in: ArXiv.org, 2022, ISSN 2331-8422
Publisher: ArXiv.org
DOI: 10.48550/arxiv.2209.12747

Massively Parallel Fitting of Gaussian Approximation Potentials (opens in new window)

Author(s): S. Klawohn, J. R. Kermode, and A. P. Bartók
Published in: ArXiv.org, 2022, ISSN 2057-3960
Publisher: ArXiv.org
DOI: 10.48550/arxiv.2207.03803

Electronic Impurity Doping of a 2D Hybrid Lead Iodide Perovskite by Bi and Sn (opens in new window)

Author(s): Haipeng Lu, Gabrielle Koknat, Yi Yao, Ji Hao, Xixi Qin, Chuanxiao Xiao, Ruyi Song, Florian Merz, Markus Rampp, Sebastian Kokott, Christian Carbogno, Tianyang Li, Glenn Teeter, Matthias Scheffler, Joseph J. Berry, David B. Mitzi, Jeffrey L. Blackburn, Volker Blum, and Matthew C. Beard
Published in: PRX Energy, Issue 2, 2023, ISSN 2768-5608
Publisher: APS
DOI: 10.1103/prxenergy.2.023010

High-Throughput Search for Triplet Point Defects with Narrow Emission Lines in 2D Materials (opens in new window)

Author(s): Sajid Ali*, Fredrik Andreas Nilsson, Simone Manti, Fabian Bertoldo, Jens Jørgen Mortensen, and Kristian Sommer Thygesen
Published in: ACS Nano, Issue 17, 2023, ISSN 1936-0851
Publisher: American Chemical Society
DOI: 10.1021/acsnano.3c04774

Artificial-intelligence-driven discovery of catalyst “genes” with application to CO2 activation on semiconductor oxides. (opens in new window)

Author(s): A. Mazheika, Y. Wang, R. Valero, F. Vines, F. Illas, L. Ghiringhelli, S. Levchenko, and M. Scheffler
Published in: Nature Communications, Issue 13, 2022, Page(s) 416, ISSN 2041-1723
Publisher: Nature Publishing Group
DOI: 10.1038/s41467-022-28042-z

Numerical Quality Control for DFT-based Materials Databases (opens in new window)

Author(s): C. Carbogno, K.S. Thygesen, B. Bieniek, C. Draxl, L.M. Ghiringhelli, A. Gulans, O. T. Hofmann, K. W. Jacobsen, S. Lubeck, J. J. Mortensen, M. Strange, E. Wruss, and M. Scheffler
Published in: npj Computational Materials, Issue 8, 2022, Page(s) 69, ISSN 2057-3960
Publisher: Nature
DOI: 10.1038/s41524-022-00744-4

Ab initio Green-Kubo simulations of heat transport in solids: method and implementation (opens in new window)

Author(s): F. Knoop, M. Scheffler, and C. Carbogno
Published in: ArXiv.org, 2022, ISSN 2331-8422
Publisher: ArXiv.org
DOI: 10.48550/arxiv.2209.01139

Recent progress of the Computational 2D Materials Database (C2DB). (opens in new window)

Author(s): M. N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Ali, F. Bertoldo, T. Deilmann, N. R. Knøsgaard, M. Kruse, A. H. Larsen, S. Manti, T. G. Pedersen, U. Petralanda, T. Skovhus, M. K. Svendsen, J. J. Mortensen, T. Olsen and K. S. Thygesen
Published in: 2D Materials, Issue 8, 2021, Page(s) 044002, ISSN 2053-1583
Publisher: IO
DOI: 10.11583/dtu.14616660

Gaussian Approximation Potentials: theory, software implementation and application examples (opens in new window)

Author(s): Sascha Klawohn, Gábor Csányi, James P. Darby, James R. Kermode, Miguel A. Caro, Albert P. Bartók
Published in: arxiv.org, 2023, ISSN 2331-8422
Publisher: arxiv.org
DOI: 10.48550/arxiv.2310.03921

Improved Uncertainty Quantification for Gaussian Process Regression Based Interatomic Potentials (opens in new window)

Author(s): P. Bartók and J. R. Kermode
Published in: ArXiv.org, 2022, ISSN 2331-8422
Publisher: ArXiv.org
DOI: 10.48550/arxiv.2206.08744

Anharmonicity in Thermal Insulators – An Analysis from First Principles (opens in new window)

Author(s): F. Knoop, T.A.R. Purcell, M. Scheffler, and C. Carbogno
Published in: ArXiv.org, 2022, ISSN 2057-3960
Publisher: ArXiv.org
DOI: 10.48550/arxiv.2209.12720

Surface science using coupled cluster theory via local Wannier functions and in-RPA-embedding: The case of water on graphitic carbon nitride (opens in new window)

Author(s): T. Schäfer, A. Gallo, A. Irmler, F. Hummel, and A. Grüneis
Published in: J. Chem. Phys., Issue 00219606, 2021, Page(s) 244103, ISSN 0021-9606
Publisher: American Institute of Physics
DOI: 10.1063/5.0074936

Automatic Identification of Crystal Structures and Interfaces via Artificial-Intelligence-based Electron Microscopy (opens in new window)

Author(s): Andreas Leitherer, Byung Chul Yeo, Christian H. Liebscher, Luca M. Ghiringhelli
Published in: arxiv.org, 2023, ISSN 2331-8422
Publisher: arxiv.org
DOI: 10.48550/arxiv.2303.12702

High-throughput analysis of Fröhlich-type polaron models (opens in new window)

Author(s): Pedro Miguel M. C. de Melo, Joao C. de Abreu, Bogdan Guster, Matteo Giantomassi, Zeila Zanolli, Xavier Gonze, Matthieu J. Verstraete
Published in: ArXiv.org, 2022, ISSN 2331-8422
Publisher: ArXiv.org
DOI: 10.48550/arxiv.2207.00364

Influence of spin-orbit coupling on chemical bonding (opens in new window)

Author(s): A. Gulans and C. Draxl
Published in: ArXiv.org, 2022, ISSN 2331-8422
Publisher: ArXiv.org
DOI: 10.48550/arxiv.2204.02751

Robust recognition and exploratory analysis of crystal structures via Bayesian deep learning. (opens in new window)

Author(s): A. Leitherer, A. Ziletti, and L.M. Ghiringhelli
Published in: Nature Communications, Issue 12, 2021, Page(s) 6234, ISSN 2041-1723
Publisher: Nature Publishing Group
DOI: 10.1038/s41467-021-26511-5

Updates to the DScribe Library: New Descriptors and Derivatives (opens in new window)

Author(s): Jarno Laakso, Lauri Himanen, Henrietta Homm, Eiaki V. Morooka, Marc O. J. Jäger, Milica Todorović, Patrick Rinke
Published in: arXiv.org, 2023, ISSN 2331-8422
Publisher: arxiv.org
DOI: 10.48550/arxiv.2303.14046

DFT Exchange: Sharing Perspectives on the Workhorse of Quantum Chemistry and Materials Science (opens in new window)

Author(s): M. Teale et al.
Published in: Phys. Chem. Chem. Phys., Issue Advance Article, 2022, ISSN 1463-9076
Publisher: Royal Society of Chemistry
DOI: 10.26434/chemrxiv-2022-13j2v

Hierarchical symbolic regression for identifying key physical parameters correlated with bulk properties of perovskites (opens in new window)

Author(s): L. Foppa, T. A. R. Purcell, S. V. Levchenko, M. Scheffler, and L. M. Ghiringhelli
Published in: Phys. Rev. Lett., Issue 129, 2022, Page(s) 055301, ISSN 0031-9007
Publisher: American Physical Society
DOI: 10.1103/physrevlett.129.055301

Hybrid Materials: Still Challenging for Ab Initio Theory? (opens in new window)

Author(s): Ignacio Gonzalez Oliva; Benedikt Maurer; Ben Alex; Sebastian Tillack; Maximilian Schebek; Claudia Draxl
Published in: Phys. Status Solidi A, Issue 221, 2023, ISSN 1862-6319
Publisher: Wiley
DOI: 10.1002/pssa.202300170

An AI-toolkit to develop and share research into new materials (opens in new window)

Author(s): L. M. Ghiringhelli
Published in: Nature Review Physics, Issue 25225820, 2021, Page(s) 724, ISSN 2522-5820
Publisher: Nature Reviews Physics
DOI: 10.1038/s42254-021-00373-8

Exploring and machine learning structural instabilities in 2D materials (opens in new window)

Author(s): Manti, S., Svendsen, M.K., Knøsgaard, N.R. et al.
Published in: npj Comput Mater, Issue 9, 2023, ISSN 2057-3960
Publisher: Nature
DOI: 10.1038/s41524-023-00977-x

Jobflow: Computational Workflows Made Simple. (opens in new window)

Author(s): Rosen et al.
Published in: Journal of Open Source Software, 2024, ISSN 2475-9066
Publisher: JOSS
DOI: 10.21105/joss.05995

Density-of-states similarity descriptor for unsupervised learning from materials data (opens in new window)

Author(s): M. Kuban, S. Rigamonti, M. Scheidgen, and C. Draxl
Published in: Sci. Data, Issue 20524463, 2022, Page(s) 646, ISSN 2052-4463
Publisher: Sci. Data
DOI: 10.48550/arxiv.2201.02187

Roadmap: Organic-inorganic hybrid perovskite semiconductors and devices. (opens in new window)

Author(s): L. Schmidt-Mende, V. Dyakonov, S. Olthof, F. Ünlü, K. Moritz, T. Lê, S. Mathur, A. D. Karabanov, D. C. Lupascu, L. Herz, A. Hinderhofer, F. Schreiber, A. Chernikov, D. A. Egger, O. Shargaieva, C. Cocchi, E. Unger, M. Saliba, M. Malekshahi Byranvand, M. Kroll, F. Nehm, K. Leo, A. Redinger, J. Höcker, T. Kirchartz, J. Warby, E. Gutierrez-Partida, D. Neher, M. Stolterfoht, U. Würfel, M. Unmüssi
Published in: APL Materials, Issue 9, 2021, Page(s) 109202, ISSN 2166-532X
Publisher: American Institute of Physics
DOI: 10.1063/5.0047616

matscipy: materials science at the atomic scale with Python (opens in new window)

Author(s): Grigorev, P.; Frérot, L.; Birks, F.; Gola, A.; Golebiowski, J.; Grießer, J.; Hörmann, J.; Klemenz, A.; Moras, G.; Nöhring, W.; Oldenstaedt, J.; Patel, P.; Reichenbach, T.; Shenoy, L.; Walter, M.; Wengert, S. ; https://orcid.org/0000-0002-8008-1482; Kermode, J.; Pastewka, L.
Published in: The Journal of Open Source Software (JOSS), Issue 9, 2024, Page(s) 5668, ISSN 2475-9066
Publisher: The Journal of Open Source Software (JOSS)
DOI: 10.21105/joss.05668

Accelerating Materials-Space Exploration by Mapping Materials Properties via Artificial Intelligence: The Case of the Lattice Thermal Conductivity (opens in new window)

Author(s): T. Purcell, M. Scheffler, L. M. Ghiringhelli, C. Carbogno
Published in: Arxiv.org, 2022, ISSN 2331-8422
Publisher: Arxiv
DOI: 10.48550/arxiv.2204.12968

Enhancing Metallicity and Basal Plane Reactivity of 2D Materials via Self-Intercalation (opens in new window)

Author(s): Stefano Americo*, Sahar Pakdel, and Kristian Sommer Thygesen
Published in: ACS Nano, Issue 18, 2024, ISSN 1936-0851
Publisher: American Chemical Society
DOI: 10.1021/acsnano.3c08117

Hundreds of new, stable, one-dimensional materials from a generative machine learning model (opens in new window)

Author(s): Hadeel Moustafa, Peder Meisner Lyngby, Jens Jørgen Mortensen, Kristian S. Thygesen, Karsten W. Jacobsen
Published in: ArXiv.org, 2022, ISSN 2331-8422
Publisher: ArXiv.org
DOI: 10.48550/arxiv.2210.08878

The NOMAD Artificial-Intelligence Toolkit: Turning materials-science data into knowledge and understanding (opens in new window)

Author(s): Luigi Sbailò, Ádám Fekete, Luca M. Ghiringhelli, Matthias Scheffler
Published in: npj Computational Materials, Issue 8, 2022, Page(s) 250, ISSN 2057-3960
Publisher: Nature Research
DOI: 10.1038/s41524-022-00935-z

excitingtools: An exciting Workflow Tool (opens in new window)

Author(s): Alexander Buccheri; Fabian Peschel; Benedikt Maurer; Mara Voiculescu; Daniel T. Speckhard; Hannah Kleine; Elisa Stephan; Martin Kuban; Claudia Draxl
Published in: Journal of Open Source Software, Issue 8, 2023, Page(s) 5148, ISSN 2475-9066
Publisher: Journal of Open Source Software
DOI: 10.21105/joss.05148

Compressing Local Atomic Neighbourhood Descriptors (opens in new window)

Author(s): J. P. Darby, J. R. Kermode and G. Csányi
Published in: Npj Computational Materials, Issue 8, 2022, Page(s) 166, ISSN 2057-3960
Publisher: Nature
DOI: 10.48550/arxiv.2112.13055

Beyond the Fourth Paradigm — the Rise of AI (opens in new window)

Author(s): Andreas Marek; Markus Rampp; Klaus Reuter; Erwin Laure
Published in: 2023 IEEE 19th International Conference on e-Science (e-Science), 2023, Page(s) 1-4
Publisher: IEEE
DOI: 10.1109/e-science58273.2023.10254904

Searching for OpenAIRE data...

There was an error trying to search data from OpenAIRE

No results available

My booklet 0 0