Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Novel Materials Discovery

CORDIS proporciona enlaces a los documentos públicos y las publicaciones de los proyectos de los programas marco HORIZONTE.

Los enlaces a los documentos y las publicaciones de los proyectos del Séptimo Programa Marco, así como los enlaces a algunos tipos de resultados específicos, como conjuntos de datos y «software», se obtienen dinámicamente de OpenAIRE .

Resultado final

Report on the ASE-FireWorks workshop (se abrirá en una nueva ventana)

The report will contain a description of scientific program and the main outcome of the workshop. Based on feedback from the participants (users of the ASE-FireWorks workflows) we will also provide an analysis of where future work on LibFlow-X should be focused to ensure the best service for the community.

Researcher-exchange, workshop and summer-schools report (se abrirá en una nueva ventana)

This document reports on the academic workshops, researcher-exchange, summer schools and hackathons, described in Task 1, 2, 3 and 4 of WP12. The report will include the description of the presentations and tutorial training materials; the report will also briefly describe the feedback from the participants.

Final report, documentation and software release on Green-X, for RPA, GW and EPC (se abrirá en una nueva ventana)

The report will complete the report D2.1, and describe the final product, its testing, and its availability.

Evaluation of mini-apps in pre-exascale architectures (se abrirá en una nueva ventana)

The suite of mini-apps will be executed and analysed in the availablepre-exascle architectures at BSC, CSC and MPG. The deliverable will be aperformance report on the studied architectures including withrecommendations for hardware industry and code developers.

Report and documentation of scalable data infrastructure with deployment on multiple sites; data replication and synchronisation (se abrirá en una nueva ventana)

Documentation of the all developed and implemented data infrastructure components. This also addresses that the infrastructure allows distributed deployment, the functionality to replicate and synchronize data between deployments, and the multiple-site properties.

Report on industry workshops (se abrirá en una nueva ventana)

This report summarizes, analyzes and comments upon the two industry workshops, with particular focus on (a) impact and value of the CoE for industry: whether and how the CoE meets industrial needs; (b) feedback from industry on how the CoE could be made more valuable to them.

Report on applications of DNNs for dimensionality reduction in materials systems; of kernel learning to dimensional reduction in materials; of descriptor discovery to materials systems; and user-guided interactive force-field generation using kernel metho (se abrirá en una nueva ventana)

Report on applications of (i) high-accuracy prediction of extensive and intensive materials properties with distributed DNN, (ii) active-learning-driven interatomic force-field generation using kernel methods, and (iii) descriptor discovery for complex materials properties with SGD and SISSO.

Report and documentation of finalized enhanced releases of Libxc-X and ELPA-X for DFT for exascale architectures (se abrirá en una nueva ventana)

Report on the performed optimization of ELPA-X as well as on the achieved improvements. Both single node usage efficiency as well as usability on higher number of nodes should be addressed. Provide the final, fully enhanced version of ELPA-X. Furthermore, the final, fully enhanced version of Libxc-X will be provided, featuring improved non-local operator evaluation and reference implementations of the basis set transformation for each code family. For both ELPA-X and of Libxc-X, porting to essential next generation supercomputers will have been performed, and results on the co-development with respect to DFT codes will be reported.

CSA engagement report - activities, results, analysis (se abrirá en una nueva ventana)

This report will detail our collaboration with the Focus CoE on training and industry outreach, including an analysis of the effectiveness.

Report and documentation of validated workflows for beyond DFT calculations in LibFlow-X (se abrirá en una nueva ventana)

This report describes the workflow implemented in LibFlow-X for RPA, MP2, CC, and GW calculations. The report will also include a detailed documentation of the input parameters for controlling the workflows and of the output produced by these workflows. A series of examples validating the workflows will be provided and described in detail.

Report and documentation of CC4S-X and CTF-X including block-sparse tensors (se abrirá en una nueva ventana)

Report describing the additional support for block-sparse tensors in CC4S calculations to fully account for the translational symmetry of periodic crystals. Test of the implementation will be described for a prototypical periodic system.

Report and documentation of running baseline infrastructure with storage, automated processing, and basic search for common meta-data (se abrirá en una nueva ventana)

Description of implementation of the data infrastructure that allows human users (GUI) and computer programs (API) to upload data, automatically process data, search based on a subset of common pre-defined metadata, download raw-data and download archive data in a common code-independent format.

Report on industry training (se abrirá en una nueva ventana)

This document reports on summer schools described in Task 2 of WP10. The core of this report is the presentations and tutorial training materials. The report also briefly describes the feedback from the participants and suggestions for the final workshop.

Data management plan (se abrirá en una nueva ventana)

This plan outlines what data will be generated by the project; its format and scope; how and where it will be stored, backed up, curated and preserved (where appropriate); any protection or security it requires; how it will be shared in the future in any open data repository; and any conditions for access.

Website (updated throughout the project) (se abrirá en una nueva ventana)

The project website, with its associated Twitter feed, YouTube channel, and facebook page, is the online ‘shop window’ of the project. It will summarize the key parts of NOMAD (project aims, project team, approach and science, newsletters, publications of the team, etc.); it will be updated on an ongoing basis, with news and information on project developments and activities.

Report and documentation of NOMAD CoE AI-X Toolkit: JupyterHub based implementation of the near-real-time data HPAI methods developed in WP6 (se abrirá en una nueva ventana)

Final report and documentation of the following aspects: a) The data infrastructure includes a JupyterHub deployment localized close to archive storage (same data centre) and b) notebooks implementing the HPAI methods of WP6 can be run on this JupyterHUB.

Report and documentation of codes and frameworks of DNN, exascale kernel methods and exascale SISSO and SGD (se abrirá en una nueva ventana)

Description of codes and documentation for software frameworks of distributed DNN, towards-exascale kernel methods and towards-exascale SISSO and SGD. The frameworks will enable near-real-time, interactive analysis of data in the NOMAD Archive.

Dissemination materials (brochure, flyer, posters, newsletters) (se abrirá en una nueva ventana)

A brochure, flyer and poster will be produced during the first 12 months of the project, in order to have resources for distribution at conferences, meetings, industry briefings, etc. The poster may be displayed at the groups of the beneficiaries. The newsletters will be produced at M18, M30 and M42, and will primarily describe the progress of the project during the relevant year. It should address an audience like the second shell and the Psi-k community.

Publicaciones

optimade-python-tools: a Python library for serving and consuming materials data via OPTIMADE APIs (se abrirá en una nueva ventana)

Autores: M. L. Evans, C. W. Andersen, S. Dwaraknath, M. Scheidgen, Á. Fekete, and D. Winston
Publicado en: Journal of Open Source Software, Edición 6(65), 2021, Página(s) 3458, ISSN 2475-9066
Editor: creative commons
DOI: 10.21105/joss.03458

Shift current photovoltaic efficiency of 2D materials (se abrirá en una nueva ventana)

Autores: Thomas Pedersen, Mikkel Sauer, Alireza Taghizadeh, Urko Holguin, Martin Ovesen, Kristian Thygesen, Thomas Olsen, Horia Cornean
Publicado en: ResearchSquare, 2022, ISSN 2693-5015
Editor: ResearchSquare
DOI: 10.21203/rs.3.rs-2158047/v1

Optimal data generation for machine learned interatomic potentials (se abrirá en una nueva ventana)

Autores: Connor Allen, Albert P. Bartók
Publicado en: ArXiv.org, 2022, ISSN 2331-8422
Editor: ArXiv.org
DOI: 10.48550/arxiv.2207.11828

NOMAD: A distributed web-based platform for managing materials science research data (se abrirá en una nueva ventana)

Autores: Scheidgen et al.
Publicado en: Journal of Open Source Software, Edición 8, 2023, ISSN 2475-9066
Editor: Journal of Open Source Software
DOI: 10.21105/joss.05388

Absorption versus Adsorption: High-Throughput Computation of Impurities in 2D Materials (se abrirá en una nueva ventana)

Autores: Joel Davidsson, Fabian Bertoldo, Kristian S. Thygesen, Rickard Armiento
Publicado en: ArXiv.org, 2022, ISSN 2331-8422
Editor: ArXiv.org
DOI: 10.48550/arxiv.2207.05353

Data-driven discovery of novel 2D materials by deep generative models (se abrirá en una nueva ventana)

Autores: Peder Lyngby, Kristian Sommer Thygesen
Publicado en: ArXiv.org, 2022, ISSN 2331-8422
Editor: ArXiv.org
DOI: 10.48550/arxiv.2206.12159

Atomic Simulation Recipes: A Python framework and library for automated workflows. (se abrirá en una nueva ventana)

Autores: M. Gjerding, T. Skovhus, A. Rasmussen, F. Bertoldo, A. H. Larsen, J. J. Mortensen, K. S. Thygesen
Publicado en: Computational Materials Science, Edición 199, 2021, Página(s) 110731, ISSN 0927-0256
Editor: Elsevier BV
DOI: 10.1016/j.commatsci.2021.110731

Interpretability of machine-learning models in physical sciences.Challenges and perspectives for interoperability and reuse of heterogenous data collectionsLearning Rules for Materials Properties and Functions (se abrirá en una nueva ventana)

Autores: Luca M. Ghiringhelli, Draxl, M. Kuban, S. Rigamonti, M. Scheidgen, M. Boley and M. Scheffler
Publicado en: Roadmap on Machine Learning in Electronic Structure, Edición 4, 2022, Página(s) 023004, ISSN 2516-1075
Editor: IOP
DOI: 10.1088/2516-1075/ac572f

Adaptively compressed exchange in the linearized augmented plane wave formalism (se abrirá en una nueva ventana)

Autores: D. Zavickis, K. Kacars, J. Cīmurs, and A. Gulans
Publicado en: Phys. Rev. B, Edición 24699950, 2022, Página(s) 165101, ISSN 2469-9950
Editor: APS
DOI: 10.48550/arxiv.2201.10914

Recent advances in the SISSO method and their implementation in the SISSO++ code (se abrirá en una nueva ventana)

Autores: Thomas A. R. Purcell, Matthias Scheffler, Luca M. Ghiringhelli
Publicado en: arxiv.org, 2023, ISSN 2331-8422
Editor: arxiv.org
DOI: 10.48550/arxiv.2305.01242

GIMS: Graphical Interface for Materials Simulations (se abrirá en una nueva ventana)

Autores: S. Kokott, I. Hurtado, C. Vorwerk, C. Draxl, V. Blum, and M. Scheffler
Publicado en: Journal of Open Source Software, Edición 6(57), 2021, Página(s) 2767, ISSN 2475-9066
Editor: NumFOCUS / Open Source Initiative
DOI: 10.21105/joss.02767

All-electron periodic G0W0 implementation with numerical atomic orbital basis functions: algorithm and benchmarks (se abrirá en una nueva ventana)

Autores: Xinguo Ren; Florian Merz; Hong Jiang; Yi Yao; Yi Yao; Markus Rampp; Hermann Lederer; Volker Blum; Matthias Scheffler
Publicado en: Phys. Rev. Materials, Edición 5, 2021, Página(s) 013807, ISSN 2475-9953
Editor: American Physical Society
DOI: 10.1103/physrevmaterials.5.013807

Sensitivity and Dimensionality of Atomic Environment Representations used for Machine Learning Interatomic Potentials (se abrirá en una nueva ventana)

Autores: B. Onat, C. Ortner and J. R. Kermode
Publicado en: J. Chem. Phys., Edición 153, 2020, Página(s) 144106, ISSN 0021-9606
Editor: American Institute of Physics
DOI: 10.48550/arxiv.2006.01915

OPTIMADE, an API for exchanging materials data (se abrirá en una nueva ventana)

Autores: Andersen, Casper W.; Armiento, Rickard; Blokhin, Evgeny; Conduit, Gareth J.; Dwaraknath, Shyam; Evans, Matthew L.; Fekete, Ádám; Gopakumar, Abhijith; Gražulis, Saulius; Merkys, Andrius; Mohamed, Fawzi; Oses, Corey; Pizzi, Giovanni; Rignanese, Gian-Marco; Scheidgen, Markus; Talirz, Leopold; Toher, Cormac; Winston, Donald; Aversa, Rossella; Choudhary, Kamal; Colinet, Pauline; Curtarolo, Stefano;
Publicado en: Scientific Data, Edición Vol 8, Iss 1, 2021, Página(s) 1-10, ISSN 2052-4463
Editor: Springer Nature
DOI: 10.1038/s41597-021-00974-z

Critical assessment of G0W0 calculations for 2D materials: the example of monolayer MoS2 (se abrirá en una nueva ventana)

Autores: Rodrigues Pela, R., Vona, C., Lubeck, S. et al.
Publicado en: npj Comput Mater, Edición 10, 2024, ISSN 2057-3960
Editor: Nature
DOI: 10.1038/s41524-024-01253-2

On the Uncertainty Estimates of Equivariant-Neural-Network-Ensembles Interatomic Potentials (se abrirá en una nueva ventana)

Autores: Shuaihua Lu, Luca M. Ghiringhelli, Christian Carbogno, Jinlan Wang, Matthias Scheffler
Publicado en: arxiv.org, 2023, ISSN 2331-8422
Editor: arxiv.org
DOI: 10.48550/arxiv.2309.00195

Ab initio approach for thermodynamic surface phases with full consideration of anharmonic effects – the example of hydrogen at Si(100) (se abrirá en una nueva ventana)

Autores: Y. Zhou, C. Zhu, M. Scheffler, and L. M. Ghiringhelli
Publicado en: Physical Review Letters, Edición 00319007, 2022, Página(s) 246101, ISSN 0031-9007
Editor: American Physical Society
DOI: 10.48550/arxiv.2202.01193

Ab initio property characterisation of thousands of previously unknown 2D materials (se abrirá en una nueva ventana)

Autores: Peder Lyngby, Kristian Sommer Thygesen
Publicado en: arxiv.org, 2024, ISSN 2331-8422
Editor: arxiv.org
DOI: 10.48550/arxiv.2402.02783

The FHI-aims Code: All-electron, ab initio materials simulations towards the exascale (se abrirá en una nueva ventana)

Autores: Volker Blum, Mariana Rossi, Sebastian Kokott, Matthias Scheffler
Publicado en: ArXiv.org, 2022, ISSN 2331-8422
Editor: ArXiv.org
DOI: 10.48550/arxiv.2208.12335

Learning design rules for selective oxidation catalysts from high-throughput experimentation and artificial intelligence. (se abrirá en una nueva ventana)

Autores: L. Foppa, C. Sutton, L. M. Ghiringhelli, S. De, P. Löser, S.A. Schunk, A. Schäfer, and M. Scheffler
Publicado en: ACS Catalysis, Edición 12, 2022, Página(s) 2223, ISSN 2155-5435
Editor: American Chemical Society
DOI: 10.1021/acscatal.1c04793

Electronic Properties of Functionalized Diamanes for Field-Emission Displays (se abrirá en una nueva ventana)

Autores: Christian Tantardini*, Alexander G. Kvashnin*, Maryam Azizi, Xavier Gonze*, Carlo Gatti, Tariq Altalhi, and Boris I. Yakobson*
Publicado en: ACS Appl. Mater. Interfaces, Edición 15, 2023, ISSN 1944-8244
Editor: American Chemical Society
DOI: 10.1021/acsami.3c01536

Benchmark of GW Methods for Core-Level Binding Energies (se abrirá en una nueva ventana)

Autores: J. Li, Y. Jin, P. Rinke, W. Yang, D. Golze
Publicado en: J. Chem. Theory Comput., 2022, ISSN 1549-9618
Editor: American Chemical Society
DOI: 10.1021/acs.jctc.2c00617

Equivariant analytical mapping of first principles Hamiltonians to accurate and transferable materials models (se abrirá en una nueva ventana)

Autores: L. Zhang, B. Onat, G. Dusson, G. Anand, R. J. Maurer, C. Ortner, and J.R. Kermode
Publicado en: npj Comp. Mater., Edición 20573960, 2022, Página(s) 158, ISSN 2057-3960
Editor: npj Comp. Mater.
DOI: 10.48550/arxiv.2111.13736

Developments and applications of the OPTIMADE API for materials discovery, design, and data exchange (se abrirá en una nueva ventana)

Autores: Matthew L. Evans, Johan Bergsma, Andrius Merkys, Casper W. Andersen, Oskar B. Andersson, Daniel Beltrán, Evgeny Blokhin, Tara M. Boland, Rubén Castañeda Balderas, Kamal Choudhary, Alberto Díaz Díaz, Rodrigo Domínguez García, Hagen Eckert, Kristjan Eimre, María Elena Fuentes Montero, Adam M. Krajewski, Jens Jørgen Mortensen, José Manuel Nápoles Duarte, Jacob Pietryga, Ji Qi, Felipe de Je
Publicado en: arxiv.org, 2024, ISSN 2331-8422
Editor: arxiv.org
DOI: 10.48550/arxiv.2402.00572

Robust model benchmarking and bias-imbalance in data-driven materials science: a case study on MODNet (se abrirá en una nueva ventana)

Autores: Pierre-Paul De Breuck; Matthew Evans; Gian-Marco Rignanese
Publicado en: Journal of Physics: Condensed Matter, Edición 33, 2021, Página(s) 404002, ISSN 0953-8984
Editor: Institute of Physics Publishing
DOI: 10.1088/1361-648x/ac1280

Advancing Critical Chemical Processes for a Sustainable Future: Challenges for Industry and the Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT) (se abrirá en una nueva ventana)

Autores: Michael Bowker, Serena DeBeer, Nicholas F. Dummer, Graham J. Hutchings, Matthias Scheffler, Ferdi Schüth, Stuart H. Taylor, Harun Tüysüz
Publicado en: Angewandte Chemie., Edición e202209016, 2022, ISSN 1433-7851
Editor: John Wiley & Sons Ltd.
DOI: 10.1002/ange.202209016

Materials Genes of Heterogeneous Catalysis from Clean Experiments and Artificial Intelligence (se abrirá en una nueva ventana)

Autores: Lucas Foppa; Luca Ghiringhelli; Frank Girgsdies; Maike Hashagen; Pierre Kube; Michael Hävecker; Spencer J. Carey; Andrey Tarasov; Peter Kraus; Frank Rosowski; Robert Schlögl; Annette Trunschke; Matthias Scheffler
Publicado en: MRS Bulletin, Edición 46, 2021, Página(s) 1-11, ISSN 0883-7694
Editor: Materials Research Society
DOI: 10.1557/s43577-021-00165-6

CELL: a Python package for cluster expansion with a focus on complex alloys (se abrirá en una nueva ventana)

Autores: Santiago Rigamonti, Maria Troppenz, Martin Kuban, Axel Hübner, Claudia Draxl
Publicado en: arXiv.org, 2023, ISSN 2331-8422
Editor: arxiv.org
DOI: 10.48550/arxiv.2310.18223

Representing individual electronic states for machine learning GW band structures of 2D materials (se abrirá en una nueva ventana)

Autores: N. R. Knosgaard and K. S. Thygesen
Publicado en: Nature Communications, Edición 13, 2022, Página(s) 468, ISSN 2041-1723
Editor: Nature Publishing Group
DOI: 10.1038/s41467-022-28122-0

Data-centric heterogeneous catalysis: identifying rules and materials genes of alkane selective oxidation (se abrirá en una nueva ventana)

Autores: Lucas Foppa, Frederik Rüther, Michael Geske, Gregor Koch, Frank Girgsdies, Pierre Kube, Spencer Carey, Michael Hävecker, Olaf Timpe, Andrey Tarasov, Matthias Scheffler, Frank Rosowski, Robert Schlögl, and Annette Trunschke
Publicado en: ChemRxiv, 2022, ISSN 2573-2293
Editor: ChemRxiv
DOI: 10.26434/chemrxiv-2022-xmg75

Towards fully automatized GW band structure calculations: What we can learn from 60.000 self-energy evaluations. (se abrirá en una nueva ventana)

Autores: A. Rasmussen, T. Deilmann, and K. S. Thygesen
Publicado en: npj Computational Materials, Edición 7(22), 2021, Página(s) 1-9, ISSN 2057-3960
Editor: Nature Publishing Group
DOI: 10.1038/s41524-020-00480-7

High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers. (se abrirá en una nueva ventana)

Autores: Pakdel, S., Rasmussen, A., Taghizadeh, A. et al.
Publicado en: Nat Commun, Edición 15, 2024, ISSN 2041-1723
Editor: Nature Publishing Group
DOI: 10.1038/s41467-024-45003-w

Computational exfoliation of atomically thin 1D materials with application to Majorana bound states (se abrirá en una nueva ventana)

Autores: H. Moustafa, P.M. Larsen, M.N. Gjerding, J.J. Mortensen, K.S. Thygesen, K.W. Jacobsen
Publicado en: ArXiv.org, 2022, ISSN 2331-8422
Editor: ArXiv.org
DOI: 10.48550/arxiv.2204.00472

Materials Genes of CO2 Hydrogenation on Supported Cobalt Catalysts: An Artificial Intelligence Approach Integrating Theoretical and Experimental Data (se abrirá en una nueva ventana)

Autores: Ray Miyazaki*, Kendra S Belthle, Harun Tüysüz, Lucas Foppa*, and Matthias Scheffler
Publicado en: J. Am. Chem. Soc., 2024, ISSN 0002-7863
Editor: American Chemical Society
DOI: 10.1021/jacs.3c12984

Advancing descriptor search in materials science: feature engineering and selection strategies (se abrirá en una nueva ventana)

Autores: B. Hoock, S. Rigamonti, and C. Draxl
Publicado en: New J. Phys., Edición 24, 2022, Página(s) 113049, ISSN 1367-2630
Editor: Institute of Physics Publishing
DOI: 10.1088/1367-2630/aca49c

A simple denoising approach to exploit multi-fidelity data for machine learning materials properties (se abrirá en una nueva ventana)

Autores: Liu, X., De Breuck, PP., Wang, L. et al.
Publicado en: npj Comput Mater, Edición 8, 2022, ISSN 2057-3960
Editor: Nature
DOI: 10.1038/s41524-022-00925-1

From Prediction to Action: Critical Role of Performance Estimation for Machine-Learning-Driven Materials Discovery (se abrirá en una nueva ventana)

Autores: Mario Boley, Felix Luong, Simon Teshuva, Daniel F Schmidt, Lucas Foppa, Matthias Scheffler
Publicado en: arXiv.org, 2023, ISSN 2331-8422
Editor: arXiv.org
DOI: 10.48550/arxiv.2311.15549

Quantum point defects in 2D materials: The QPOD database (se abrirá en una nueva ventana)

Autores: Fabian Bertoldo, Sajid Ali, Simone Manti, Kristian S. Thygesen
Publicado en: npj Comput Mater, Edición 8, 2021, Página(s) 56, ISSN 2057-3960
Editor: npj Computational Materials
DOI: 10.48550/arxiv.2110.01961

ACEpotentials.jl: A Julia Implementation of the Atomic Cluster Expansion (se abrirá en una nueva ventana)

Autores: William C. Witt, Cas van der Oord, Elena Gelžinytė, Teemu Järvinen, Andres Ross, James P. Darby, Cheuk Hin Ho, William J. Baldwin, Matthias Sachs, James Kermode, Noam Bernstein, Gábor Csányi, Christoph Ortner
Publicado en: arXiv.org, 2023, ISSN 2331-8422
Editor: arxiv.org
DOI: 10.48550/arxiv.2309.03161

Self-interaction corrected SCAN functional for molecules and solids in the numeric atom-center orbital framework (se abrirá en una nueva ventana)

Autores: Sheng Bi, Christian Carbogno, Igor Ying Zhang, Matthias Scheffler
Publicado en: arxiv.org, 2024, ISSN 2331-8422
Editor: arxiv.org
DOI: 10.48550/arxiv.2401.11696

Indirect Band Gap Semiconductors for Thin-Film Photovoltaics: High-Throughput Calculation of Phonon-Assisted Absorption (se abrirá en una nueva ventana)

Autores: Jiban Kangsabanik, Mark Kamper Svendsen, Alireza Taghizadeh, Andrea Crovetto, and Kristian S. Thygesen
Publicado en: J. Am. Chem. Soc., Edición 144, 2022, Página(s) 19872, ISSN 1520-5126
Editor: ACS Publications
DOI: 10.1021/jacs.2c07567

Many-core acceleration of the first-principles all-electron quantum perturbation calculations (se abrirá en una nueva ventana)

Autores: H. Shang, X. Duan, F. Li, L. Zhang, Z. Xu, K. Liu, H. Luo, Y. Ji, W. Zhao, W. Xue, L. Chen, and Y. Zhang
Publicado en: Computer Physics Communications, Edición 00104655, 2021, Página(s) 108045, ISSN 0010-4655
Editor: Elsevier BV
DOI: 10.1016/j.cpc.2021.108045

Leveraging genetic algorithms to maximise the predictive capabilities of the SOAP descriptor (se abrirá en una nueva ventana)

Autores: Trent Barnard, Steven Tseng, James P. Darby, Albert P. Bartók, Anders Broo and Gabriele C. Sosso
Publicado en: Molecular Systems Design & Engineering, 2022, ISSN 2058-9689
Editor: Royal Society of Chemistry
DOI: 10.1039/d2me00149g

TCMI: a non-parametric mutual-dependence estimator for multivariate continuous distributions. (se abrirá en una nueva ventana)

Autores: Regler, B., Scheffler, M. & Ghiringhelli, L.M
Publicado en: Data Min Knowl Disc, Edición 36, 2022, ISSN 1573-756X
Editor: Springer Nature
DOI: 10.1007/s10618-022-00847-y

Towards a Multi-Objective Optimization of Subgroups for the Discovery of Materials with Exceptional Performance (se abrirá en una nueva ventana)

Autores: Lucas Foppa, Matthias Scheffler
Publicado en: arXiv.org, 2023, ISSN 2331-8422
Editor: arxiv.org
DOI: 10.48550/arxiv.2311.10381

Interpretable Machine Learning for Materials Design. (se abrirá en una nueva ventana)

Autores: J. Dean, M. Scheffler, T. A. R. Purcell, S. V. Barabash, R. Bhowmik, T. Bazhirov
Publicado en: Journal of Materials Research, Edición 38, 2023, ISSN 2044-5326
Editor: Springer Nature
DOI: 10.1557/s43578-023-01164-w

Tensor-reduced atomic density representations (se abrirá en una nueva ventana)

Autores: James P. Darby, Dávid P. Kovács, Ilyes Batatia, Miguel A. Caro, Gus L. W. Hart, Christoph Ortner, Gábor Csányi
Publicado en: ArXiv.org, 2022, ISSN 2331-8422
Editor: ArXiv.org
DOI: 10.48550/arxiv.2210.01705

Shared Metadata for Data-Centric Materials Science (se abrirá en una nueva ventana)

Autores: L.M. Ghiringhelli et al.
Publicado en: ArXiv.org, 2022, ISSN 2331-8422
Editor: ArXiv.org
DOI: 10.48550/arxiv.2205.14774

Limits to Hole Mobility and Doping in Copper Iodide (se abrirá en una nueva ventana)

Autores: Joe Willis, Romain Claes, Qi Zhou, Matteo Giantomassi, Gian-Marco Rignanese, Geoffroy Hautier*, and David O. Scanlon*
Publicado en: Chem. Mater., Edición 35, 2023, ISSN 0897-4756
Editor: American Chemical Society
DOI: 10.1021/acs.chemmater.3c01628

Identifying Outstanding Transition‑Metal‑Alloy Heterogeneous Catalysts for the Oxygen Reduction and Evolution Reactions via Subgroup Discovery (se abrirá en una nueva ventana)

Autores: Foppa, Lucas; Ghiringhelli, Luca M.
Publicado en: Topics in Catalysis, 2021, Página(s) 1-11, ISSN 1022-5528
Editor: Baltzer Science Publishers B.V.
DOI: 10.1007/s11244-021-01502-4

Fermionic Quantum Turbulence: Pushing the Limits of High-Performance Computing (se abrirá en una nueva ventana)

Autores: Gabriel Wlazlowski, Michael McNeil Forbes, Saptarshi Rajan Sarkar, Andreas Marek, Maciej Szpindler
Publicado en: arXiv.org, 2024, ISSN 2331-8422
Editor: arxiv.org
DOI: 10.48550/arxiv.2310.03341

Similarity of materials and data-quality assessment by fingerprinting (se abrirá en una nueva ventana)

Autores: M. Kuban, S. Gabaj, W. Aggoune, C. Vona, S. Rigamonti, and C. Draxl
Publicado en: MRS Bulletin Impact, Edición 08837694, 2022, Página(s) 1, ISSN 0883-7694
Editor: Materials Research Society
DOI: 10.48550/arxiv.2204.04056

Interface to high-performance periodic coupled-cluster theory calculations with atom-centered, localized basis functions (se abrirá en una nueva ventana)

Autores: E. Moerman, F. Hummel, A. Grüneis, A. Irmler, M. Scheffler
Publicado en: Journal of Open-Source Software, Edición 24759066, 2022, Página(s) 4040, ISSN 2475-9066
Editor: Journal of Open-Source Software
DOI: 10.21105/joss.04040

Benchmarking the accuracy of the separable resolution of the identity approach for correlated methods in the numeric atom-centered orbitals framework (se abrirá en una nueva ventana)

Autores: Francisco A. Delesma, Moritz Leucke, Dorothea Golze, Patrick Rinke
Publicado en: arXiv.org, 2024, ISSN 2331-8422
Editor: arxiv.org
DOI: 10.48550/arxiv.2310.11058

Time-frequency component of the GreenX library: minimax grids for efficient RPA and GW calculations (se abrirá en una nueva ventana)

Autores: Azizi, Maryam; Wilhelm, Jan; Golze, Dorothea; Giantomassi, Matteo; Panadés-Barrueta, Ramón L; Delesma, Francisco A; Buccheri, Alexander; Gulans, Andris; Rinke, Patrick; Draxl, Claudia; Gonze, Xavier
Publicado en: Journal of Open Source Software, Edición 8, 2023, Página(s) 5570, ISSN 2475-9066
Editor: Journal of Open Source Software
DOI: 10.21105/joss.05570

Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning (se abrirá en una nueva ventana)

Autores: Langer, M.F., Goeßmann, A. & Rupp, M.
Publicado en: npj Comput Mater, Edición 8, 2022, ISSN 2057-3960
Editor: Nature
DOI: 10.1038/s41524-022-00721-x

FAIR data enabling new horizons for materials research (se abrirá en una nueva ventana)

Autores: M. Scheffler, M. Aeschlimann, M. Albrecht, T. Bereau, H.-J. Bungartz, C.Felser, M. Greiner, A. Groß, C. Koch, K. Kremer, W. E. Nagel, M- Scheidgen, C. Wöll, and C. Draxl
Publicado en: Nature, Edición 00280836, 2022, Página(s) 635, ISSN 0028-0836
Editor: Nature Publishing Group
DOI: 10.48550/arxiv.2204.13240

Accurate and efficient treatment of spin-orbit coupling via second variation employing local orbitals (se abrirá en una nueva ventana)

Autores: Cecilia Vona, Sven Lubeck, Hannah Kleine, Andris Gulans, and Claudia DraxlCecilia Vona, Sven Lubeck, Hannah Kleine, Andris Gulans, and Claudia Draxl
Publicado en: Phys. Rev. B, Edición 108, 2023, ISSN 2469-9950
Editor: APS
DOI: 10.1103/physrevb.108.235161

Roadmap on Electronic Structure Codes in the Exascale Era (se abrirá en una nueva ventana)

Autores: Vikram Gavini, Stefano Baroni, Volker Blum, David R. Bowler, Alexander Buccheri, James R. Chelikowsky, Sambit Das, William Dawson, Pietro Delugas, Mehmet Dogan, Claudia Draxl, Giulia Galli, Luigi Genovese, Paolo Giannozzi, Matteo Giantomassi, Xavier Gonze, Marco Govoni, Andris Gulans, François Gygi, John M. Herbert, Sebastian Kokott, Thomas D. Kühne, Kai-Hsin Liou, Tsuyoshi Miyazaki, Phani Motam
Publicado en: ArXiv.org, 2022, ISSN 2331-8422
Editor: ArXiv.org
DOI: 10.48550/arxiv.2209.12747

Massively Parallel Fitting of Gaussian Approximation Potentials (se abrirá en una nueva ventana)

Autores: S. Klawohn, J. R. Kermode, and A. P. Bartók
Publicado en: ArXiv.org, 2022, ISSN 2057-3960
Editor: ArXiv.org
DOI: 10.48550/arxiv.2207.03803

Electronic Impurity Doping of a 2D Hybrid Lead Iodide Perovskite by Bi and Sn (se abrirá en una nueva ventana)

Autores: Haipeng Lu, Gabrielle Koknat, Yi Yao, Ji Hao, Xixi Qin, Chuanxiao Xiao, Ruyi Song, Florian Merz, Markus Rampp, Sebastian Kokott, Christian Carbogno, Tianyang Li, Glenn Teeter, Matthias Scheffler, Joseph J. Berry, David B. Mitzi, Jeffrey L. Blackburn, Volker Blum, and Matthew C. Beard
Publicado en: PRX Energy, Edición 2, 2023, ISSN 2768-5608
Editor: APS
DOI: 10.1103/prxenergy.2.023010

High-Throughput Search for Triplet Point Defects with Narrow Emission Lines in 2D Materials (se abrirá en una nueva ventana)

Autores: Sajid Ali*, Fredrik Andreas Nilsson, Simone Manti, Fabian Bertoldo, Jens Jørgen Mortensen, and Kristian Sommer Thygesen
Publicado en: ACS Nano, Edición 17, 2023, ISSN 1936-0851
Editor: American Chemical Society
DOI: 10.1021/acsnano.3c04774

Artificial-intelligence-driven discovery of catalyst “genes” with application to CO2 activation on semiconductor oxides. (se abrirá en una nueva ventana)

Autores: A. Mazheika, Y. Wang, R. Valero, F. Vines, F. Illas, L. Ghiringhelli, S. Levchenko, and M. Scheffler
Publicado en: Nature Communications, Edición 13, 2022, Página(s) 416, ISSN 2041-1723
Editor: Nature Publishing Group
DOI: 10.1038/s41467-022-28042-z

Numerical Quality Control for DFT-based Materials Databases (se abrirá en una nueva ventana)

Autores: C. Carbogno, K.S. Thygesen, B. Bieniek, C. Draxl, L.M. Ghiringhelli, A. Gulans, O. T. Hofmann, K. W. Jacobsen, S. Lubeck, J. J. Mortensen, M. Strange, E. Wruss, and M. Scheffler
Publicado en: npj Computational Materials, Edición 8, 2022, Página(s) 69, ISSN 2057-3960
Editor: Nature
DOI: 10.1038/s41524-022-00744-4

Ab initio Green-Kubo simulations of heat transport in solids: method and implementation (se abrirá en una nueva ventana)

Autores: F. Knoop, M. Scheffler, and C. Carbogno
Publicado en: ArXiv.org, 2022, ISSN 2331-8422
Editor: ArXiv.org
DOI: 10.48550/arxiv.2209.01139

Recent progress of the Computational 2D Materials Database (C2DB). (se abrirá en una nueva ventana)

Autores: M. N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Ali, F. Bertoldo, T. Deilmann, N. R. Knøsgaard, M. Kruse, A. H. Larsen, S. Manti, T. G. Pedersen, U. Petralanda, T. Skovhus, M. K. Svendsen, J. J. Mortensen, T. Olsen and K. S. Thygesen
Publicado en: 2D Materials, Edición 8, 2021, Página(s) 044002, ISSN 2053-1583
Editor: IO
DOI: 10.11583/dtu.14616660

Gaussian Approximation Potentials: theory, software implementation and application examples (se abrirá en una nueva ventana)

Autores: Sascha Klawohn, Gábor Csányi, James P. Darby, James R. Kermode, Miguel A. Caro, Albert P. Bartók
Publicado en: arxiv.org, 2023, ISSN 2331-8422
Editor: arxiv.org
DOI: 10.48550/arxiv.2310.03921

Improved Uncertainty Quantification for Gaussian Process Regression Based Interatomic Potentials (se abrirá en una nueva ventana)

Autores: P. Bartók and J. R. Kermode
Publicado en: ArXiv.org, 2022, ISSN 2331-8422
Editor: ArXiv.org
DOI: 10.48550/arxiv.2206.08744

Anharmonicity in Thermal Insulators – An Analysis from First Principles (se abrirá en una nueva ventana)

Autores: F. Knoop, T.A.R. Purcell, M. Scheffler, and C. Carbogno
Publicado en: ArXiv.org, 2022, ISSN 2057-3960
Editor: ArXiv.org
DOI: 10.48550/arxiv.2209.12720

Surface science using coupled cluster theory via local Wannier functions and in-RPA-embedding: The case of water on graphitic carbon nitride (se abrirá en una nueva ventana)

Autores: T. Schäfer, A. Gallo, A. Irmler, F. Hummel, and A. Grüneis
Publicado en: J. Chem. Phys., Edición 00219606, 2021, Página(s) 244103, ISSN 0021-9606
Editor: American Institute of Physics
DOI: 10.1063/5.0074936

Automatic Identification of Crystal Structures and Interfaces via Artificial-Intelligence-based Electron Microscopy (se abrirá en una nueva ventana)

Autores: Andreas Leitherer, Byung Chul Yeo, Christian H. Liebscher, Luca M. Ghiringhelli
Publicado en: arxiv.org, 2023, ISSN 2331-8422
Editor: arxiv.org
DOI: 10.48550/arxiv.2303.12702

High-throughput analysis of Fröhlich-type polaron models (se abrirá en una nueva ventana)

Autores: Pedro Miguel M. C. de Melo, Joao C. de Abreu, Bogdan Guster, Matteo Giantomassi, Zeila Zanolli, Xavier Gonze, Matthieu J. Verstraete
Publicado en: ArXiv.org, 2022, ISSN 2331-8422
Editor: ArXiv.org
DOI: 10.48550/arxiv.2207.00364

Influence of spin-orbit coupling on chemical bonding (se abrirá en una nueva ventana)

Autores: A. Gulans and C. Draxl
Publicado en: ArXiv.org, 2022, ISSN 2331-8422
Editor: ArXiv.org
DOI: 10.48550/arxiv.2204.02751

Robust recognition and exploratory analysis of crystal structures via Bayesian deep learning. (se abrirá en una nueva ventana)

Autores: A. Leitherer, A. Ziletti, and L.M. Ghiringhelli
Publicado en: Nature Communications, Edición 12, 2021, Página(s) 6234, ISSN 2041-1723
Editor: Nature Publishing Group
DOI: 10.1038/s41467-021-26511-5

Updates to the DScribe Library: New Descriptors and Derivatives (se abrirá en una nueva ventana)

Autores: Jarno Laakso, Lauri Himanen, Henrietta Homm, Eiaki V. Morooka, Marc O. J. Jäger, Milica Todorović, Patrick Rinke
Publicado en: arXiv.org, 2023, ISSN 2331-8422
Editor: arxiv.org
DOI: 10.48550/arxiv.2303.14046

DFT Exchange: Sharing Perspectives on the Workhorse of Quantum Chemistry and Materials Science (se abrirá en una nueva ventana)

Autores: M. Teale et al.
Publicado en: Phys. Chem. Chem. Phys., Edición Advance Article, 2022, ISSN 1463-9076
Editor: Royal Society of Chemistry
DOI: 10.26434/chemrxiv-2022-13j2v

Hierarchical symbolic regression for identifying key physical parameters correlated with bulk properties of perovskites (se abrirá en una nueva ventana)

Autores: L. Foppa, T. A. R. Purcell, S. V. Levchenko, M. Scheffler, and L. M. Ghiringhelli
Publicado en: Phys. Rev. Lett., Edición 129, 2022, Página(s) 055301, ISSN 0031-9007
Editor: American Physical Society
DOI: 10.1103/physrevlett.129.055301

Hybrid Materials: Still Challenging for Ab Initio Theory? (se abrirá en una nueva ventana)

Autores: Ignacio Gonzalez Oliva; Benedikt Maurer; Ben Alex; Sebastian Tillack; Maximilian Schebek; Claudia Draxl
Publicado en: Phys. Status Solidi A, Edición 221, 2023, ISSN 1862-6319
Editor: Wiley
DOI: 10.1002/pssa.202300170

An AI-toolkit to develop and share research into new materials (se abrirá en una nueva ventana)

Autores: L. M. Ghiringhelli
Publicado en: Nature Review Physics, Edición 25225820, 2021, Página(s) 724, ISSN 2522-5820
Editor: Nature Reviews Physics
DOI: 10.1038/s42254-021-00373-8

Exploring and machine learning structural instabilities in 2D materials (se abrirá en una nueva ventana)

Autores: Manti, S., Svendsen, M.K., Knøsgaard, N.R. et al.
Publicado en: npj Comput Mater, Edición 9, 2023, ISSN 2057-3960
Editor: Nature
DOI: 10.1038/s41524-023-00977-x

Jobflow: Computational Workflows Made Simple. (se abrirá en una nueva ventana)

Autores: Rosen et al.
Publicado en: Journal of Open Source Software, 2024, ISSN 2475-9066
Editor: JOSS
DOI: 10.21105/joss.05995

Density-of-states similarity descriptor for unsupervised learning from materials data (se abrirá en una nueva ventana)

Autores: M. Kuban, S. Rigamonti, M. Scheidgen, and C. Draxl
Publicado en: Sci. Data, Edición 20524463, 2022, Página(s) 646, ISSN 2052-4463
Editor: Sci. Data
DOI: 10.48550/arxiv.2201.02187

Roadmap: Organic-inorganic hybrid perovskite semiconductors and devices. (se abrirá en una nueva ventana)

Autores: L. Schmidt-Mende, V. Dyakonov, S. Olthof, F. Ünlü, K. Moritz, T. Lê, S. Mathur, A. D. Karabanov, D. C. Lupascu, L. Herz, A. Hinderhofer, F. Schreiber, A. Chernikov, D. A. Egger, O. Shargaieva, C. Cocchi, E. Unger, M. Saliba, M. Malekshahi Byranvand, M. Kroll, F. Nehm, K. Leo, A. Redinger, J. Höcker, T. Kirchartz, J. Warby, E. Gutierrez-Partida, D. Neher, M. Stolterfoht, U. Würfel, M. Unmüssi
Publicado en: APL Materials, Edición 9, 2021, Página(s) 109202, ISSN 2166-532X
Editor: American Institute of Physics
DOI: 10.1063/5.0047616

matscipy: materials science at the atomic scale with Python (se abrirá en una nueva ventana)

Autores: Grigorev, P.; Frérot, L.; Birks, F.; Gola, A.; Golebiowski, J.; Grießer, J.; Hörmann, J.; Klemenz, A.; Moras, G.; Nöhring, W.; Oldenstaedt, J.; Patel, P.; Reichenbach, T.; Shenoy, L.; Walter, M.; Wengert, S. ; https://orcid.org/0000-0002-8008-1482; Kermode, J.; Pastewka, L.
Publicado en: The Journal of Open Source Software (JOSS), Edición 9, 2024, Página(s) 5668, ISSN 2475-9066
Editor: The Journal of Open Source Software (JOSS)
DOI: 10.21105/joss.05668

Accelerating Materials-Space Exploration by Mapping Materials Properties via Artificial Intelligence: The Case of the Lattice Thermal Conductivity (se abrirá en una nueva ventana)

Autores: T. Purcell, M. Scheffler, L. M. Ghiringhelli, C. Carbogno
Publicado en: Arxiv.org, 2022, ISSN 2331-8422
Editor: Arxiv
DOI: 10.48550/arxiv.2204.12968

Enhancing Metallicity and Basal Plane Reactivity of 2D Materials via Self-Intercalation (se abrirá en una nueva ventana)

Autores: Stefano Americo*, Sahar Pakdel, and Kristian Sommer Thygesen
Publicado en: ACS Nano, Edición 18, 2024, ISSN 1936-0851
Editor: American Chemical Society
DOI: 10.1021/acsnano.3c08117

Hundreds of new, stable, one-dimensional materials from a generative machine learning model (se abrirá en una nueva ventana)

Autores: Hadeel Moustafa, Peder Meisner Lyngby, Jens Jørgen Mortensen, Kristian S. Thygesen, Karsten W. Jacobsen
Publicado en: ArXiv.org, 2022, ISSN 2331-8422
Editor: ArXiv.org
DOI: 10.48550/arxiv.2210.08878

The NOMAD Artificial-Intelligence Toolkit: Turning materials-science data into knowledge and understanding (se abrirá en una nueva ventana)

Autores: Luigi Sbailò, Ádám Fekete, Luca M. Ghiringhelli, Matthias Scheffler
Publicado en: npj Computational Materials, Edición 8, 2022, Página(s) 250, ISSN 2057-3960
Editor: Nature Research
DOI: 10.1038/s41524-022-00935-z

excitingtools: An exciting Workflow Tool (se abrirá en una nueva ventana)

Autores: Alexander Buccheri; Fabian Peschel; Benedikt Maurer; Mara Voiculescu; Daniel T. Speckhard; Hannah Kleine; Elisa Stephan; Martin Kuban; Claudia Draxl
Publicado en: Journal of Open Source Software, Edición 8, 2023, Página(s) 5148, ISSN 2475-9066
Editor: Journal of Open Source Software
DOI: 10.21105/joss.05148

Compressing Local Atomic Neighbourhood Descriptors (se abrirá en una nueva ventana)

Autores: J. P. Darby, J. R. Kermode and G. Csányi
Publicado en: Npj Computational Materials, Edición 8, 2022, Página(s) 166, ISSN 2057-3960
Editor: Nature
DOI: 10.48550/arxiv.2112.13055

Beyond the Fourth Paradigm — the Rise of AI (se abrirá en una nueva ventana)

Autores: Andreas Marek; Markus Rampp; Klaus Reuter; Erwin Laure
Publicado en: 2023 IEEE 19th International Conference on e-Science (e-Science), 2023, Página(s) 1-4
Editor: IEEE
DOI: 10.1109/e-science58273.2023.10254904

Buscando datos de OpenAIRE...

Se ha producido un error en la búsqueda de datos de OpenAIRE

No hay resultados disponibles

Mi folleto 0 0