Project description
Silicon spin qubits could bring practical quantum computers a step closer
Quantum computers could provide breakthroughs in many disciplines. However, the number of qubits needed for a useful quantum computer, one that could compete with a classical PC in solving complex computational problems, is in the hundreds of thousands. Silicon spin qubits are an appealing alternative to competing qubit technologies. The EU-funded QLSI project aims to demonstrate that silicon spin qubits are a compelling platform for scaling to very large numbers of qubits. Demonstration activities will focus on the following: 16-qubit quantum processors based on modern semiconductor manufacturing techniques; high-fidelity single- and two-qubit gates; quantum computer prototypes with online open-access for the community (up to 8 qubits available online); documentation of the detailed requirements to address scalability towards large systems > 1 000 qubits.
Objective
We propose a 4-year project QLSI, Quantum Large Scale Integration in Silicon, which objective is to demonstrate that silicon spin qubits are a compelling platform for scaling to very large numbers of qubits. Our demonstration relies on four ingredients:
• Fabrication and operation of 16-qubit quantum processors based on industry-compatible semiconductor technology;
• Demonstration of high-fidelity (>99%) single- and two-qubit gates, read-out and initialization;
• Demonstration of a quantum computer prototype, with online open-access for the community (up to 8 qubits available online);
• Documentation of the detailed requirements to address scalability towards large systems >1000 qubits.
To achieve these results, our consortium brings together an unrivalled multidisciplinary team of European groups in academia, RTOs and industry working on silicon-based quantum devices. These groups are committed to playing an active part in developing the industrial ecosystem in silicon-based quantum technologies.
QLSI is structured in three enabling toolboxes and one demonstration and scalability activity:
- the semiconductor toolbox brings together skills from the semiconductor industry such as fabrication, high throughput test and CAD (computer aided design) with the expertise of the physics community;
- the quantum toolbox gathers skills from the physics community on spin and quantum properties of Si based nanostructures and on quantum engineering from theory and experience perspectives;
- the control toolbox gathers teams with instrumentation skills ranging from RF signal generation, automation and set up of high throughput characterization at low temperature.
The toolboxes will generate stand-alone beyond the state-of-the-art results and will generate inputs to feed the demonstrator and scalability activity, which will integrate devices, hardware and software solutions to create an online open access demonstrator, to perform hybrid computation and to analyze scalability.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences software
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences biological sciences ecology ecosystems
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.3. - FET Flagships
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETFLAG-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75015 PARIS 15
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.