Project description
Powering the way for renewable ammonia
Green ammonia, made via a process that is entirely carbon-free and 100 % renewable, is widely used to make agricultural fertilisers. Its energy density by volume is nearly twofold compared to hydrogen, and its shipping, storage and distribution are much easier. The EU-funded HiPowAR project will develop a reactor for the direct energy conversion of ammonia fuel to power. Specifically, it will realise and validate a new process based on a membrane reactor; the process is simple and cheaper than a solid oxide fuel cell. The aim is to promote the acceptance of ammonia as a synthetic fuel without CO2 emissions, encouraging the adoption of ammonia fuelling technologies.
Objective
Renewable ammonia is considered increasingly as a carbon-free green fuel opening up the path to a new nitrogen-based energy economy. Its energy density by volume is nearly twofold compared to hydrogen with easier shipping, storage and distribution. As the market grows due to efforts of various companies (e.g. YARA) into greening the production process, the distribution routes for importing ammonia and ammonia fueling technologies will follow suit. The proposal shall promote the acceptance of ammonia as a synthetic fuel without CO2 emissions. It focuses on a breakthrough in the direct energy conversion from NH3 fuel to power. For that purpose, a new promising process based on a membrane reactor will be realized and characterized experimentally. The process is comparable to a fuel cell with an inner short circuit but without any typical electrical interconnections avoiding electrical losses. Therefore, the system is much simpler and less expensive than a SOFC (Solid oxide fuel cell). The chemical energy of liquid ammonia is converted into a highly compressed gas (N2 + H2O) through a so-called self-pressurizing combustion in a pressure vessel with constant volume. The power is collected by the work of expansion using a gas expander, e.g. in a gas expander like a steam turbine or engine. Since high pressure enhances the total process efficiency, membrane reactor consists of tubular ceramic membranes able to withstand very high outside gas pressure. The membranes are conductive for oxide ions and electronic charge carriers and realize the inner electrical short circuit in a single element. They are also called MIEC (Mixed Ionic Electronic Conductor), ITM (Ion transporting Membranes), OTM (Oxygen transporting Membranes). Comparable to the fuel cell, thermodynamic efficiency of the process is not restricted. In contrast to internal combustion engines, steam power plants or other processes based on cycling of a working fluid, a much higher efficiency is expected.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.2. - FET Proactive
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETPROACT-2019-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
17489 Greifswald
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.