Description du projet
Développer des pérovskites sans plomb
Face au danger croissant que représente le changement climatique pour le monde, nombreux sont ceux qui cherchent à développer de nouvelles solutions d’énergie propre ou à améliorer les solutions actuelles. Dans cette optique, l’énergie solaire a fait l’objet d’une grande innovation sous la forme de pérovskites d’halogénure, qui pourraient permettre une conversion de l’énergie solaire moins chère et plus performante. Malheureusement, la plupart des pérovskites photovoltaïques sont composés de plus de 10 % de plomb, ce qui est contraire à de nombreuses réglementations interdisant les métaux lourds dans l’électronique. Le projet FREENERGY, financé par l’UE, mettra au point des pérovskites à la fois plus efficaces et plus rentables, composées d’étain au lieu de plomb. L’étain est beaucoup moins nocif pour l’environnement.
Objectif
Halide perovskites are the next big thing in solar energy. State-of-the-art perovskite solar cells outperform established technologies with the advantage of processing from solution. Solution-processed perovskite solar cells are made spraying a precursor ink onto a substrate: the perovskite forms as the chemicals contained in the ink crystallize. This production process makes halide perovskites a valid low-cost alternative established material such as silicon. Furthermore, halide perovskite can work in tandem with silicon to break the theoretical power conversion efficiency limit of 33% according to the Shockley-Queisser model.
However, the most effective photovoltaic perovskites contain more than 10% by weight of lead, which overstep the limits adopted in most of the countries to regulate the use of heavy metals in electronics.
The FREENERGY project aims at achieving efficient and cost-effective lead-free perovskites replacing lead (Pb) with tin (Sn). We have demonstrated that tin is relatively inert if dispersed in the environment as compared to lead, which is prone to enter into plants and thus into the food chain. This solution does not present any manufacturing issue, as making tin-based perovskite is very similar to make lead-based perovskite. The main obstacle is represented by the low chemical stability of Sn2+, which is very prone to be oxidized to Sn4+. We have identified three key strategies:
• Inorganic cations: We found that organic cations comprising perovskite are more prone than inorganic in to activate the Sn oxidation. We have selected a series of inorganic cations comprising Cs and K to replace the organics most commonly used.
• Alternative solvents: dimethyl sulfoxide is currently used to synthesize the perovskite, but it contributes to the oxidation. We identified alternative solvents to overcome this issue.
• Reducing additives: The perovskite materials are deposited from a solution comprising the precursor of the materials and the solvents.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- ingénierie et technologiegénie de l'environnementénergie et combustiblesénergie renouvelableénergie solaire
- sciences naturellessciences chimiquesélectrochimieélectrolyse
- sciences naturellessciences chimiqueschimie inorganiquemétal pauvre
- sciences naturellessciences chimiqueschimie inorganiquemétalloïde
- ingénierie et technologiegénie de l'environnementénergie et combustiblesconversion de l'énergie
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Programme(s)
Appel à propositions
(s’ouvre dans une nouvelle fenêtre) ERC-2020-PoC
Voir d’autres projets de cet appelRégime de financement
ERC-POC - Proof of Concept GrantInstitution d’accueil
80138 Napoli
Italie