Objective
From the investigations it has been shown, that
- Pretreatment, using O2-plasma, UV-ozone or corona, results in a considerable increase of the joint strength for plastic/adhesive combinations, in general and for polyphenylene sulphide/adhesive and polyetherimide/adhesive, in particular.
- Cleaning of the substrate with isopropyl alcohol is, in general, sufficient enough to obtain good joint strength values; however, pretreatment is essential to polyphenylene sulphide.
- Optimized pretreatment process parameters are available.
- For each type of engineering plastic material, glued to itself or to dissimilar materials, a suitable 1 and/or 2 component adhesive system, that fulfils the requirements with respect to strength and flexibility, before and after environmental testing, has been developed and tested.
- A new test geometry (NTG) has been developed, that fulfils the set demands and that is suitable for the determination of characteristic material parameters.
- A developed failure criterion, used in combination with the NTG, has proved to be a powerful tool for predicting the strength of multiaxial loaded plastic adhesive joints.
Joining of engineering plastics is very often only possible by adhesives, especially in the case of combinations with other materials (metal, ceramic, glass). However, with adhesives available on the market it is often not possible to make adequate use of the specific benefits of these materials (high strength, temperature resistance, dimensional stability). In addition, the material surfaces are often difficult to bond and frequently adhesion failures occur, due to lack of knowledge about the nature of the surfaces, surface modification methods and environmental influence (temperature, humidity) on joints. Moreover, at present adhesive technology does not meet the sharply increasing (in-line) production requirements (cycle time, reproducibility, health, environment) and is often achieved after tedious trial and error experiments.
The aim of the project will be the development of adhesive technologies for engineering plastics, used in consumer products, domestic appliances and automotive applications that meet these product and production requirements.
This will be realized by the development of improved adhesive systems (adhesion, thermal stability, flexibility) and their processing, improvement of adhesion by surface characterization and appropriate surface modification techniques, as well as adequate test methods for strength and stability (creep, relaxation). Theoretical calculations of joint behaviour are performed for various load and environmental conditions (non-linear behaviour) enabling predictive modelling.
Successful completion should yield significant savings in joint manufacturing costs of (ca. 25%), development time (> 25%) and greatly reduce the use of hazardous solvents (safety, environment) in materials and processes. The results will be incorporated into internal codes of practice of the main partners in the project and may form a basis for later European norms.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering amorphous solids
- natural sciences chemical sciences organic chemistry alcohols
- natural sciences mathematics pure mathematics geometry
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
5600 MD EINDHOVEN
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.