Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-04-19

NEW MATERIALS FOR OPTICAL APPLICATIONS BY SOL GEL PROCESSING

Objective


Passive as well as chi(2), chi(3) and amplifying materials can be fabricated by a sol-gel synthesis following an inorganic or an organic-inorganic nanocomposite (Nanomer) route.
Linear waveguides were prepared using hydroslysis based Nanomer systems and embossing as a patterning technique. For applications in the 1.55 µm wavelength region a special chloro-silane based route was developed, resulting in low loss strip waveguides. Furthermore different Nanomer material systems were doped by dyes and different quantum dots to obtain chi(2) and chi(3) efficiency in waveguide applications. Pure inorganic material systems were used for preparation of thick oxide monolayers with main attention to crack free preparation and optical quality. A new technology for glass amplifying waveguides was created using commercially available glasses and glasses prepared by melting of xerogel powders.
Further microoptical elements (gratings, Fresnel lenses) were made by an inorganic as well as a composite sol-gel route.
Materials for optical applications in the 780, 1300 and 1500 nm range (waveguides, non-linear materials, amplifying materials) will be synthesised by sol-gel techniques. Two types of basic materials for thick films will be prepared: SiO2 by a colloidal route and inorganic-organic polymers by well known techniques. For patterning, the materials will be modified by functions to be used in photolithographic and embossing processes (embossing with micropatterned moulds, laser patterning, photolithography). The basic materials will be functionalized by compounds generating second order non-linear susceptibilities (a. push-pull molecules), third order non-linear susceptibilities (b. semiconductor colloids and metal colloids) and amplifying properties (rare earth elements). Several demonstrator components will be fabricated, including passive materials (microlen arrays, strip and slab waveguides) a. and b. demonstrators (strip and slab waveguides) and amplifiers (strip and slab waveguides). The outcomings of the project are expected to provide a technological basis for the fabrication of optical components at competitive costs for a variety of industrial applications.

Similar proposal submitted to Brite/Euram II in march 1992, reference n BE-6133, rated "B".

Call for proposal

Data not available

Coordinator

JENOPTIK GmbH
EU contribution
No data
Address
CARL ZEISS STRAßE 1
07739 JENA
Germany

See on map

Total cost
No data

Participants (6)