Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-04-19

Superconductivity in Micro-Fabricated networks

Objective

The objective of the project is the understanding of phenomena characteristic of granular and connected superconductors. As an original approach, this study is pursued with the aid of well controlled super conducting 2D networks. In a super conducting network it is possible to control, through the micro and sub micro-fabrication, all the characteristics of the system: the super conducting coupling, the disorder, the relevance of the charging effect and the role of the electrical potential in the 2D coulomb gas regime, the role of the magnetic field and that of the mutual and self inductance in the high temperature regime. In particular the network is intended to investigate fundamental phenomena like: ground state configurations, coherence, flux pinning, behaviour of ballistic vortices, vortex interaction, quantum fluctuations. The project methodology includes Nanoscale fabrication, microscopic studies of the ground state by means of Bitter decorations and of the dynamics by means of the Low Temperature SEM, very sensitive investigations of the kinetic inductance and finally highly sophisticated computer simulations of both the low temperature and the high temperature regimes.
The project has investigated phenomena characteristic of granular and connected superconductors with the aid of well controlled superconducting 2-dimensional networks. Results are as follows:
fabrication of JJ arrays, superconducting wires and hybrid systems;
fabrication of high critical temperature (Tc) wire arrays showing macroscopic flux quantification;
first bitter decoration of an array of superconducting wires;
microscopic detection of the vortex dynamics in arrays of overdamped and underdamped junctions;
determination of the ground state in triangular and fractal lattices;
study of the ballistic vortex dynamics and of the charge vortex duality, relevant to quantum electronics;
medium scale computer facility for the investigations of quantum phenomena that can be described using path integral methods, many body theory, etc;
medium scale computer facility with optimized programs for the investigation of the static and the dynamic behaviour of both RSJ and CRSJ arrays with full screening correction.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Data not available

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

Data not available

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CSC - Cost-sharing contracts

Coordinator

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA
EU contribution
No data
Address
Via della Ricerca Scientifica, 1 Edificio Sogene
00133 ROMA
Italy

See on map

Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (6)

My booklet 0 0