Objective
a) to quantify the spread in results of CFD predictions due to the way in which a CFD code is applied;
b) to quantify the validity (i.e. accuracy) of CFD predictions in large, complex gas dispersion situations.
To achieve these objectives, the proposed programme of work will consider a number of test cases using CFD and wind tunnel modelling, together with an evaluation of the uncertainty in the CFD predictions.
The research will provide better understanding of the accuracy of CFD techniques obtained in practice, and hence information on how to evaluate, with greater confidence, the overall quality of modelling results.
The consequences of major industrial accidents involving releases of toxic and hazardous gases are increasingly being analyzed using computational fluid dynamics (CFD) techniques.
The problem of near-field gas dispersion in the immediate vicinity of buildings is of great importance when the rate of spread and build-up of gas concentrations must be predicted for selected accident scenarios. The availability and capabilities of sophisticated commercial CFD codes and powerful computing workstations has enabled user to tackle increasingly large and complex scenarios. However, the validity of these predictions is generally uncertain for two important reasons :
a) the way in which a CFD code is applied to a specific problem can have a critical impact on the final results;
b) there is a considerable disparity between the scope of current model validation and the complexity of the actual industrial scenarios.
The first point relates closely to the expertise of the CFD user in specifying the "best possible solution" within the usual constraints of time, cost and computer resources, while the second growing extent of CFD usage in industry, there is an urgent need for both these aspects to be examined in depth; that is the aim of this project.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- natural sciences physical sciences classical mechanics fluid mechanics fluid dynamics computational fluid dynamics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
KT18 5BW Epsom
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.