Objetivo
This research project concerns the study of generalised theta functions on moduli spaces of vector bundles on algebraic curves. Recently, surprising links between certain conformal field theories and moduli spaces could be established, which produced unexpected formulas (Verlinde formula) and new conjectures concerning moduli spaces. This project is a continuation of my PhD thesis, where I extend the work of Beauville and Laszlo to parabolic bundles. Its objective is to study in terms of algebraic geometry the new ideas coming from mathematical physics and in particular from some rational conformal field theories (e.g. multiplication of generalised theta functions, strange duality). In classical algebraic geometry, it seems natural to start with Brill-Noether problems for parabolic bundles, to continue studying reduction problems to Abelian theta functions and their relationship with the classical Schottky-Jung-Prym geometry of the curve.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas puras geometría
- ciencias naturales matemáticas matemáticas aplicadas física matemática teoría de campos conformes
- ciencias naturales matemáticas matemáticas puras álgebra geometría algebraica
Para utilizar esta función, debe iniciar sesión o registrarse
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Datos no disponibles
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Coordinador
CB3 0WB CAMBRIDGE
Reino Unido
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.