Objectif Radial basis functions can provide excellent global approximations to surfaces and multivariate functions. Relevant problems arise throughout science, engineering and mathematical finance, so that there are numerous applications. Great theoretical progress has been made during the past decade, but efficient algorithms for the constuction and use of radial basis functions are not yet available. However, several methods show great promise. In particular, (i) the modification of 'n-body problem' codes for the evaluation of radial basis functions, and (ii) the investigation of iterative methods, specifically the preconditioned conjugate gradient algorithm, for the solution of the linear systems required. Therefore there is great scope for improving and implementing the work of, for example, Beatson, Powell, Dyn and Baxter. This major task is the main aim of the project. Further, no work has yet been done on the use of parallel computers for these computations, and the project aims to initiate this study. All code resulting will be made available via the World Wide Web Champ scientifique sciences socialeséconomie et affaireséconomieéconométriesciences naturellesinformatique et science de l'informationinternetworld wide web Programme(s) FP4-TMR - Specific research and technological development programme in the field of the training and mobility of researchers, 1994-1998 Thème(s) 0302 - Post-doctoral research training grants TM24 - Applied Mathematics Appel à propositions Data not available Régime de financement RGI - Research grants (individual fellowships) Coordinateur IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE Adresse Queen's gate 180 SW7 2BZ London Royaume-Uni Voir sur la carte Contribution de l’UE € 0,00 Participants (1) Trier par ordre alphabétique Trier par contribution de l’UE Tout développer Tout réduire Not available Grèce Contribution de l’UE € 0,00 Adresse Voir sur la carte