Objectif Around 1988 Teissier gave a description of the (multiscale) concentration of the curvature of the Milnor fiber f (Xo,...,Xn) = A of an isolated critical point of a complex analytic function f, as A -> O, in the case of plane branches. This metric phenomenon is governed entirely by the Puiseux exponent of the branch, and in turn allows one to recover the topological type of the branch from the multiscale analysis of the concentration of curvature. My research work is to extend this to the case of reducible plane curves, to connect explicitely the curvature concentration phenomenon to the embedded resolution diagram of the curve and with other aspects of the singularity theory of curves. This type of explicit relation between metric and topological aspects of singularity theory, and especially the dynamics, seems innovative and fruitful. The expected outcome is a much better understanding of the geometry of Milnor fibers and morsifications, in relation to the topology of the special fiber and also to its resolution of singularities. Champ scientifique ingénierie et technologieingénierie des materiauxfibressciences naturellesmathématiquesmathématiques purestopologiesciences naturellesmathématiquesmathématiques puresgéométrie Programme(s) FP4-TMR - Specific research and technological development programme in the field of the training and mobility of researchers, 1994-1998 Thème(s) 0302 - Post-doctoral research training grants TM22 - Geometry and Topology Appel à propositions Data not available Régime de financement RGI - Research grants (individual fellowships) Coordinateur École Normale Supérieure Adresse 45 rue d'ulm 75230 Paris France Voir sur la carte Contribution de l’UE Aucune donnée Participants (1) Trier par ordre alphabétique Trier par contribution de l’UE Tout développer Tout réduire Not available Espagne Contribution de l’UE € 0,00 Adresse Voir sur la carte Autres sources de financement Aucune donnée