Objectif This project aims at the further development of learning systems which allow the developer to introduce a priori knowledge. Such approaches bring structure into the learning task, improving performance and robustness, as well as leading to more interpretable trained systems. The project will combine existing approaches such as Local Model Networks and Markov Mixtures of Models into a single framework which will then be made available to other researchers in the form of a MATLAB toolbox, including visualisation tools. This toolbox will be open to a number of techniques including fuzzy logic and belief networks. The project will involve partners from Germany (Daimler-Benz research, DLR Braunschweig), who will provide data to test the methodology for real world applications from autonomous robotics and helicopter modelling. Other partners in Britain (Univ. of Glasgow) and Norway (SINTEF research) will collaborate on the theoretical aspects of easing the combination of learning from data while introducing human knowledge and insight. Champ scientifique ingénierie et technologiegénie électrique, génie électronique, génie de l’informationingénierie électroniquerobotiquerobot autonomeingénierie et technologiegénie mécaniquegénie automobilegénie aérospatialaviongiravionsciences naturellesinformatique et science de l'informationintelligence artificielleintelligence de calcul Programme(s) FP4-TMR - Specific research and technological development programme in the field of the training and mobility of researchers, 1994-1998 Thème(s) 0302 - Post-doctoral research training grants TM32 - Adaptive Systems and Robotics Appel à propositions Data not available Régime de financement RGI - Research grants (individual fellowships) Coordinateur Danmarks Tekniske Universitet Adresse 2800 Lyngby Danemark Voir sur la carte Contribution de l’UE € 0,00 Participants (1) Trier par ordre alphabétique Trier par contribution de l’UE Tout développer Tout réduire Not available Royaume-Uni Contribution de l’UE € 0,00 Adresse Voir sur la carte