Objectif
Existing dismantling and recycling of post consumer product is either a shredding process or an expensive product specific endeavour that is product destructive, laborious and is a mechanically intensive procedure. Neither are they satisfactory. ADSM offers an entirely different approach. It could enable an industry wide non-destructive dismantling process, increasing the ability to separate toxic and dissimilar components and materials economically. Smart Materials will form releasable fasteners and actuators introduced into products during manufacture. At 'end of life' at the recycler's facility, ADSM will provide the self-disassembling of products 'assemblies'. 'Shape Memory Alloy' (SMA) will be used for force providing actuator devices to separate assemblies since SMA has the ability to be stable in two temperature ranges, 'shape memory polymer' SMP will be used for releasable fastener devices that are capable of dual shape existence allowing release of their host assemblies. The project will test the manufacturers modified products on a pilot disassembly plant, assess and optimize the process.
The basic applicability of ADSM for EoL EEE was demonstrated within the project: Several concepts of smart devices were developed. These include discrete fastening devices based on SMA, SMP as well as the new applications of engineering polymers, of interposed layers and LMPA's. Prototypes have been fabricated and the solutions have been applied to the candidate products from three different categories. Interposed layers have been proven to produce disassembly using proprietary coatings. The LMPA solutions for conductive interconnections has proven the possibility of using proprietary lead free alloys to produce fasteners that will release upon melting with negligible contamination of aluminium or PWB components.
Ecological assessment: The performed LCAs indicate environmental benefits due to the ability of ADSM to provide better composed material fractions for recycling. The most apparent positive effect of ADSM at the EoL phase is the easier, and thus shorter, EoL processing but alternatively energy in the form of heat is necessary to trigger the ADSM effect, which causes additional environmental impact. Consequently, the most significant environmental effect from ADSM is the ability to generate purer material fractions for recycling. The more pure the fractions the higher the environmental benefits from recycling.
Active Disassembly Pilot Plant: An active disassembly pilot plant based on hot air activation and three additional demonstration plants based on hot liquid, induction and microwaves to increase the flexibility were constructed. Successful active disassembly was achieved for all candidate products in the ADPP. Applying batch processes can simulate industrial conditions. The first full active disassembly of a prototype product into plastic housings, PBWs and metal plates could be demonstrated. More specific product dependent activation methods have been applied with different degrees of success.
summary: Overall, the benefits of ADSM in the end of life phase as proven within the project have to be counterbalanced with the effort required in the product design and manufacturing phase, including e.g. licensing fees, design efforts, extra cost for materials and processing etc. Major project results: The project work has led to a broadening of the scope/definition of smart materials, (from Shape Memory Polymers and Shape Memory Alloys, to materials that can change a property allowing disassembly). Thus adhesives losing their property, low melting point alloys, and standard engineering polymers have all been investigated as possible materials to facilitate active disassembly. The project has led to the development of a range of very different fastening solutions. Examples of these solutions are now held by each partner in a toolbox of smart devices. Smart devices have been successfully built into products from three different categories. Successful in-house testing of various parameters has been carried out, and a lack of thermal stability/reliability of devices has been identified as one of the main issues. Different activation methods for disassembly have been investigated, and four different active disassembly pilot plants constructed, (activated by hot air, hot water, microwaves, and induction). The most generic triggering solution for disassembly is a plant based on hot air. (This activation method was found to be applicable for all products tested). The first successful automated disassembly into predefined fractions (plastics, printed wiring boards, metal plates) has been carried out under industrial conditions (Using several units on a pilot line). Trials were carried out with triggering disassembly by microwaves and induction. However, selective heating of smart devices interferes with general absorption of radiation. This area needs significant further work, and extreme design changes may be necessary. Active Disassembly has environmental benefits, mainly caused by its ability to provide better composed recycling fractions. Cost benefits for the end of life processing have been calculated for plastic dominated products. Active Disassembly can make plastic recycling economically feasible (offering a reduced dismantling cost, and recovery of large plastic pieces that allow an ID and sorting). It can also lead to purer material fractions due to less cross contamination. ADSM may allow the improvement of the quality of secondary material properties. This was demonstrated in the example of primary aluminium that could be recycled to secondary aluminium with properties of primary aluminium in contrast to the established material loop of aluminium that becomes usually secondary die cast. The active disassembly allows a pre-partitioning into various material streams (i.e. plastic or aluminium.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles sciences chimiques science des polymères
- sciences naturelles sciences chimiques chimie inorganique métal pauvre
- ingénierie et technologie ingénierie des materiaux revêtement et films
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Données non disponibles
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Coordinateur
TW20 0JZ EGHAM,SURREY
Royaume-Uni
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.