Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-07

Conversion of chlorofluorcarbons into environmentally friendly compounds by catalytic, dismutation and hydrodechlorination

Objective



The objective of the proposed work is to obtain fundamental information which will be relevant to the technology required to convert stocks of CFCs such as CFC-113 and CFC-12 to CFC-alternatives, the hydrofluorocarbons HFC-134a and HFC-32. Catalytic routes will be developed that involve the generic reactions, isomerization, dismutation and hydrodechlorination, all to be performed under heterogeneous conditions. Although these are known reaction types, currently used catalysts have significant drawbacks and an important aspect of the work will be the development, characteriszation and evaluation of new catalytic materials. The routes chosen have environmetal advantages since the use of toxic reagents such as anhydrous hydrogen fluoride is avoided and, in contrast to the destruction of CFCs by incineration or by catalytic oxygenation, emission of carbon dioxide is avoided.
Catalysts for isomerization or for dismutation reactions are derived from metal oxides, oxofluorides or fluorides, candidate materials being chosen on the basis of their perceived Lewis acid surface properties. Particular attention will be given to aluminium-containing compounds, as opposed to the more toxic chromium analogues and a novel feature is the use that will be made of aerogel and xerogel preparations. An integral part of the project will involve radiotracer studies of the dynamic behaviour of CFCs on a catalyst's surface, of the events involved in catalyst pretreatment and of the lability of surface halogen-containing species. The combination of this mechanistically-oriented work and the studies of catalytic activity will enable different catalysts to be compared in a definite manner.
Hydrodechlorination of CFCs is a process that has received considerable technological and academic attention, however the fundamentals of the process are still not well-understood.
Deactivation of currently used supported palladium catalysts is a major drawback. In this project emphasis will be given to this aspect by exermining the support material. By these methods it will be possible to determine the mechanism of deactivation and hence design better catalysts.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Data not available

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

Data not available

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CSC - Cost-sharing contracts

Coordinator

Humboldt-Universität zu Berlin
EU contribution
No data
Address
1-2,Hessische Strasse
10115 Berlin
Germany

See on map

Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (1)

My booklet 0 0