Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-27

Superior Semiconductor mid-infrared Lasers

Objectif

The aim of the project is to exploit fully the technological potential of quantum cascade lasers and open the way to entirely new mid-infrared applications, conceivable only if implemented with high performance mid-ir semiconductor sources. Quantum cascade lasers, based on intraband transitions, form a new class of devices, which are revolutionizing the world of mid-infrared sources. To date, QC lasers are already functioning in pulsed operation at room temperature and above, over a very broad spectral range (5-12 µm). Single frequency QC-DFB lasers are available. However, the maximum operating temperature for continuous wave operation is still ~ 150 K, imposing a strong technological limitation for all systems which require high frequency modulation and/or narrow line width. We propose to develop and fabricate QC lasers operating in continuous wave mode on thermoelectric cooling elements, which meet the requirements of compact systems and could become the essential device for a new technology based on mid-infrared radiation. The aim of the project is to exploit fully the technological potential of quantum cascade lasers and open the way to entirely new mid-infrared applications, conceivable only if implemented with high performance mid-ir semiconductor sources. Quantum cascade lasers, based on intraband transitions, form a new class of devices, which are revolutionizing the world of mid-infrared sources. To date, QC lasers are already functioning in pulsed operation at room temperature and above, over a very broad spectral range (5-12 µm). Single frequency QC-DFB lasers are available. However, the maximum operating temperature for continuous wave operation is still ~ 150 K, imposing a strong technological limitation for all systems which require high frequency modulation and/or narrow line width. We propose to develop and fabricate QC lasers operating in continuous wave mode on thermoelectric cooling elements, which meet the requirements of compact systems and could become the essential device for a new technology based on mid-infrared radiation.

OBJECTIVES
Improved atmospheric telecommunications: Mid-infrared wavelengths are much less sensitive to scattering centres in the atmosphere such as fog, smog and dust particles. This insensitivity will allow the replacement of microwave RF links by mid-infrared systems which are smaller, exhibit directional gain and can easily be focused. Large volume device production for narrow-band spectroscopy: Pulsed QC-DFB lasers are limited in linewidth. Continuous wave operation is therefore required. Cooling with closed-cycle cryocoolers is not feasible because of cost, volume, maintenance and energy requirements.

DESCRIPTION OF WORK
In the present project we plan to address the major challenge of developing advanced optoelectronic and photonic devices, semiconductor light sources for mid-infrared applications (range: 4-15 µm). Our aim is to lay down the foundations of a new technology, which can radically reform the available sources of infrared radiation by developing semiconductor lasers that are compact, efficient, robust and highly manufacturable. To achieve our objectives the scientific investigation will be divided into the following 6 fields of research:
1) Design of active regions, waveguide design and new solutions for low loss optical confinement (re-growth); conception of small area devices by selective etching, ion implantation and lateral oxidation; high reflectivity concepts (coatings, Bragg reflectors, photonic band gap structures);
2) Growth novel QC structures and will be mostly carried out by the university partners. During the third year of the project Thomson will participate in the growth of GaAs structures and Alpes Lasers in the growth of InP structures - to assure the transfer of know-how from university to industry. InP re-growth will be achieved by exploiting the existing expertise at Thomson;
3) Processing: Ridge structures for testing of devices; disk-like resonators (low threshold currents); mushroom-like ridge waveguides, with ultra narrow current; double-trench planar technology for junction-down mounting; ion implantation for planar technology of gain guided devices;
4) High reflectivity mirrors: distributed Bragg gratings for low threshold QCLs; High reflection coating of AlGaAs/GaAs QCLs; fabrication of two-dimensional photonic bandgap structures in QCLs; small area devices (ultra low currents) and specially shaped mirrors (using focused ion beam processing);
5) Characterization: integral and spectral light output of specially shaped resonators and mirrors; waveguide loss measurements in QCLs by a combination of multisectioned laser techniques and F. abry-Perot resonator Q measurements; rf modulation of Quantum Cascade lasers; reliability.6) Mounting/Packaging: thermal design: packages allowing the operation of QCLs in continuous wave mode on a Peltier element; encapsulation.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

Données non disponibles

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

CSC - Cost-sharing contracts

Coordinateur

TECHNISCHE UNIVERSITAET WIEN - MIKROSTRUKTURZENTRUM
Contribution de l’UE
Aucune donnée
Adresse
FLORAGASSE 7
1040 WIEN
Autriche

Voir sur la carte

Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Participants (6)

Mon livret 0 0