Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-27

Context Aware Vision Using Image-Based Active Recognition

Objectif

The proposed project adopts an appearance-based approach to visual recognition. The project addresses the scientific question: Can rich local image descriptions from foveal-like image sensors, selected by a hierarchal visual attention process and processed using task, scene, function and object contextual knowledge improve image-based recognition processes? This clearly addresses questions central to the cognitive vision approach.

To investigate this and more specific questions we propose to research methods for
l)foveated feature extraction and grouping,
2) integrating feature, object and top-down priming for spatial and temporal attention,
3) representing and recognising objects, contexts and situations,
4) learning representation models from visual evidence and
5) reactive and top-down control of the recognition process. We will integrate the results in a complete closed-loop object and situation recognition system.

Objectives:
The main objective is to develop the theory of context-aware visual recognition systems. We will implement the theory in a complete closed-loop vision system, and apply it to two applications (city street surveillance and customer behaviour analysis). To achieve these objectives, we will develop new feature grouping, attention and appearance-based recognition processes. This will also require development of new techniques for acquiring, representing and using visual context and situation knowledge.

Work description:
The main objective is to develop the theory of context-aware visual recognition systems. The key elements of the project are: use of foveal sensing, descriptive features extracted from the foveated image data, selective attention using context priming as well as image feature salience to steer the sensor and recognition using learned appearance models of object, context and situation. We will investigate individual components of this problem and integrate working modules into a complete working object, context and situation recognition system. To evaluate the performance of the approach, we will acquire model s and apply the system to analysis of image sequences of city centre pedestrian and potential consumer behaviour.

Five scientific workpackages will investigate:
1) foveal camera control, foveal image acquisition, foveal image feature extraction and spatial and temporal grouping.
2) system architectures that allow incremental and continual project refinement and alternative process controllers.
3) feature-based, hierarchical attention processes that receive top-down priming about interesting objects, contexts and situations.
4) object, context and situation representations, how to invoke instances of these to explain image data, how to evaluate the similarity of these to the image data and how to recover from incorrect decisions.
5) tools and methods for specifying and automatically learning object, scene and context representations and control strategies. A sixth workpackage on performance characterisation allows continual validation of individual component and full system progress. A seventh workpackage is focussed on dissemination of project results.

Milestones:
The expected project results are the theory behind and the software implementation of: Month 12) a complete but rudimentary working object, situation and context recognition system Month 24) improved system with modules based on foveal features, selective attention and situation models Month 30) addition of grouping, top-down priming and property learning Month 36) addition of automatic context model learning and error recovery

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

Données non disponibles

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

CSC - Cost-sharing contracts

Coordinateur

THE UNIVERSITY OF EDINBURGH
Contribution de l’UE
Aucune donnée
Adresse
OLD COLLEGE, SOUTH BRIDGE
EH8 9YL EDINBURGH
Royaume-Uni

Voir sur la carte

Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Participants (5)

Mon livret 0 0