Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-07

An improved measure-correlate predict algorithm for the prediction of thelong term wind climate in regions of complex environment

Objectif



In order to be able to predict the energy yield available at a potential wind farm site, accurate predictions of the wind regime at that site are required. Improvements in the wind speed and direction predictions will reduce the uncertainty in the available energy yield, which in turn will reduce the financial risks of the wind farm development. Current wind resource prediction methods have been found to contain errors of up to 10% in wind speed and 60 in direction. This translates to 15 - 20% errors in predicted energy yield.
This project will design and implement an improved Measure-Correlate-Predict (MCP) algorithm by using neural network techniques. Neural networks are particularly good at extracting patterns from noisy time series data which is exactly the problem facing MCP techniques.
The objectives of the project are:
1. design and develop a model a neural network which will result in a 50% improvement in the accuracy of the predicted long term wind speed compared with conventional measure correlate predict techniques;
2. quantify the uncertainties in wind speed and direction predictions;
3. translate the uncertainties in wind climate in to energy yield.
Achievement in these objectives should result in the following benefits:
- a substantial reduction in the financial risk of investment in wind power projects
- improved understanding of the physical parameters connected to wind speed and direction analysis
- transfer of neural network knowledge into the wind energy industry
The project will construct a comprehensive database of wind measurements. This will be carefully analysed to ensure the optimal neural network approach is used. Upon completion of the neural network algorithm, a user friendly software tool will be developed that provides easy access to highly accurate wind resource predictions. These predictions will be compared against the current state-of-the-art. The effect of the improved accuracy on energy yield will be calculated. Finally the reduction in financial uncertainty due to the new MCP method will be quantified.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

Données non disponibles

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

CSC - Cost-sharing contracts

Coordinateur

RENEWABLE ENERGY SYSTEMS LTD.
Contribution de l’UE
Aucune donnée
Adresse
23 Grosvenor Road - Beaufort House
AL1 3AW ST ALBANS
Royaume-Uni

Voir sur la carte

Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Participants (2)

Mon livret 0 0