Objective A previous project on "The Methodology of Gas Adsorption Process Design" is receiving funding under Joule I (JOUE-CT90-0052). This work, carried out on the fundamental science of adsorption thermodynamics, kinetics and adsorbent properties, will produce an improved methodology for the selection and design of adsorption systems. The objective of the present project is to deepen the understanding of the mechanisms of performance deterioration in adsorbents and to develop methods for reducing these effects. This will involve the study of coke deposition, hydrothermal ageing, and the regeneration of spent adsorbents using thermal processes. A project "The Methodology of Gas Adsorption Process Design" is receiving funding under the Joule I programme. When completed in July 1993, the work carried out on the fundamental science of adsorption thermodynamics, kinetics and adsorbent properties will be brought together into an improved methodology for the selection and design of adsorption systems. The present project divides into two separate activities. The first sub-project seeks to understand better the mechanisms of coke formation and water trapping that lead to a loss in adsorbent activity and capacity. IFP will study the role of the main parameters affecting coke formation in the presence of olefins, quantifying the effects of coke build up on absorbent properties and postulate operating regimes for adsorption and regeneration which will limit coking effects. CNRS Poitiers will study the kinetics of coke formation, characterization of the coked absorbents and methods of coke removal and adsorbent regeneration. Harwell will study hydrothermal effects; water uptake, effects on performance, capacity for regeneration, etc. CNRS-LIMSI, Orsay, will develop models to describe coking phenomena, and incorporate these models into overall process models developed under the Joule I programme. Porto will study the influence of adsorbent form on coke deposition and regeneration performance. Madrid will study the optimization of adsorbent material regeneration by investigating the conditions required to completely remove carbon deposits. Rhone-Poulenc will supply characterized adsorbents to the project. The second sub-project will further the scientific understanding of thermal adsorption and regeneration processes. CRNS Nancy will study thermal swing cycles to develop a framework for designing and optimizing thermal swing cycles for fractionating multicomponent mixtures. Bath will study the dynamics of adsorption and regeneration during thermal swing adsorption (TSA) processes, with a view to developing mathematical models suitable for rigorous process design. This work will be linked into the holistic studies at Nancy. LIMSI will construct a detailed model of a generic TSA process. This can be used to evaluate simpler models and to predict improvements in closed loop TSA cycles using results from a related study on heat pumps. Munich will concentrate on the specific problem of organic solvent removal and recovery including the use of inert gas to desorb solvents thereby reducing the temperature swings required. Fields of science natural sciencesphysical sciencesthermodynamicsnatural sciencesmathematicsapplied mathematicsmathematical model Programme(s) FP3-JOULE 2 - Specific research and technological development programme (EEC) in the field of non-nuclear energy, 1990-1994 Topic(s) 040201 - Industry Call for proposal Data not available Funding Scheme CSC - Cost-sharing contracts Coordinator United Kingdom Atomic Energy Authority Address 353,harwell OX11 0RA Didcot - oxfordshire United Kingdom See on map EU contribution € 0,00 Participants (9) Sort alphabetically Sort by EU Contribution Expand all Collapse all CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE France EU contribution € 0,00 Address Rue grandville 1 ecole n.sup.indus.chimiques 54001 Nancy See on map Centre National de la Recherche Scientifique (CNRS) France EU contribution € 0,00 Address 91406 Orsay See on map Institut Français du Pétrole France EU contribution € 0,00 Address 1-4 avenue du bois préau 92506 Rueil-malmaison See on map Rhône-Poulenc Chimie SA France EU contribution € 0,00 Address 25 quai paul doumer 92408 Courbevoie See on map Technische Universität München Germany EU contribution € 0,00 Address Arcisstraße 21 80333 München See on map UNIVERSIDAD COMPLUTENSE DE MADRID Spain EU contribution € 0,00 Address S/n,avenida de la complutense s/n ciudad universitaria 28040 Madrid See on map UNIVERSITE DE POITIERS France EU contribution € 0,00 Address Avenue du recteur pineau 40 86022 Poitiers See on map UNIVERSITY OF PORTO Portugal EU contribution € 0,00 Address Rua dr roberto frias 4200 Porto See on map University of Bath United Kingdom EU contribution € 0,00 Address Claverton down BA2 7AY Bath See on map Links Website Opens in new window