Skip to main content

Combined Cycle Project : CO2 Mitigation through CO2 / Steam / Argon Gas Turbine Cycles and CO2 / Steam / Argon Gasification

Objective

Combined cycles allow the most efficient utilisation of fuel energy for power generation and their design allows easy CO2 concentration and subsequent removal.

The overall objective of the present project is to explore the use of CO2, Steam and Argon mixtures as working agent in power cycles, and as gasification agent in coal/lignite gasification. The incentive for the use of such mixtures is the possibility to capture CO2 in a way which is believed to be competitive with other options such as CO2 recovery from stacks, fuel reforming or application of the shift reaction.

The use of semi-closed cycles running on CO2 rather than on steam or gas is not new, but it never reached any realisation phase. This is mainly due to i) the cost of separating oxygen, ii) the need for specially developed oxyfuel burners and gasifiers and iii) the need for specially designed turbo machines. The actual CO2 mitigation problem is however a strong incentive to reexamine the idea of the CO2 cycle, since a CO2-rich excess gas can easily be captured.

The present project analyses Combined, Steam injected (STIG) and Evaporative gas turbine cycles (HAT) in which Nitrogen is replaced by CO2 in a semi-closed cycle, and compares these options with the other potential routes such as the CO2 capture from stacks. Both direct firing (natural gas) and gasification (peat/coal) are considered.

Different cycle lay outs are proposed and analyzed for efficiency and techno-economical feasibility. Adapted oxyfuel burners are designed and tested on a 100 kWth scale. The adaptations required for CO2 gas turbines are assessed. Thermogravimetric analysis of coal/lignite gasification in different CO2/steam/argon mixtures are performed. Fluidized bed gasification in such mixtures is realized on lab scale. Problems of gas cleaning and CO2 purification are analyzed.

Funding Scheme

CSC - Cost-sharing contracts

Coordinator

VRIJE UNIVERSITEIT BRUSSEL
Address
2,Pleinlaan 2
1050 Brussel
Belgium

Participants (7)

Alce Sc
Belgium
Address
10,Rue De La Dime
4920 Embourg
CRANFIELD UNIVERSITY
United Kingdom
Address
Wharley End, Cranfield
MK43 0AL Cranfield - Bedfordshire
FOUNDATION OF RESEARCH AND TECHNOLOGY - HELLAS
Greece
Address
6Th Km, Charilaou - Thermi Road
57001 Thessaloniki
Kungliga Tekniska Högskolan
Sweden
Address
Teknikringen
100 44 Stockholm
Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)
Germany
Address
Schinkelstraße 8
52062 Aachen
Université de Liège
Belgium
Address
21,Rue E. Solvay
4000 Liège
VRIJE UNIVERSITEIT BRUSSEL
Belgium
Address
2,Pleinlaan 2
1050 Bruxelles