Objectif
The objectives of this work is to develop micromechanical finite elemen t modelling techniques for composite material behaviour prediction. This micromechanical modelling will be developed for material behaviour at the fibre/matrix level and linked to laminate behaviour at the macromechanical level.
The composite used in this project was T300 carbon/BSL914 resin. A finite element (FE) based unit cell approach successfully predicted the elastic constants for the unidirectional composite (UDC). To investigate the mechanisms of failure under static loading, the UDC was tested in longitudinal shear, transverse tension and transverse compression. Angled ply lamina were also tested in tension to investigate shear behaviour. To establish interaction between plies, crossply laminates were investigated under static and cyclic loading. Creep behaviour was investigated on the pure resin, on the UDC loaded in transverse tension and on the 45 degree lamina.
Under longitudinal tensile loading the failure process was shown to be controlled by the progressive breakage of fibres. A statistical model was developed which could predict the tensile strength. Under longitudinal shear, transverse tension and transverse compression, failure was shown to be dominated by the behaviour of the matrix material. However, an interphase layer, formed between the fibre and the parent matrix during the curing process has a strong influence on behaviour (particularly in transverse tension).
A damage model was developed which could predict the transverse tensile strength of the UDC. In transverse compression and longitudinal shear, the observed strain to failure of the UDC was much greater than that in transverse tension.
Testing and analysis of crossply laminates showed that significant damage occurred within the inner layers of the laminate, particularly under cyclic loading, prior to failure. Load recovery models were developed to predict the observed behaviour.
Nonlinear FE analysis, using the unit cell model to investigate stress relaxation due to matrix creep, showed that as the composite cooled from cure to room temperature, the temperature at which residual stress buildup outweighs matrix creep is around 140 C. Thus, to calculate the residual stresses in the composite, relaxation due to creep effects in the matrix any be neglected if a stress free temperature of 140 C is assumed. This avoids the need for full nonlinear analysis.
THE PROJECT INCLUDES THE FOLLOWING INNOVATIVE ASPECTS:
- PREDICTIVE CAPABILITY FOR COMPOSITE MATERIAL BEHAVIOUR BASED ON CONSTITUENT FIBRE AND MATRIX PROPERTIES-BEHAVIOUR.
- EARLY IDENTIFICATION OF POTENTIAL PROBLEMS.
- UNDERSTANDING OF THE IMPORTANCE OF INTERNAL STRESSES, CRACK DENSITY, ETC...
- DEVELOPMENT OF A DESIGN METHODOLOGY
THE EXPECTED BENEFITS ARE:
- INCREASED CONFIDENCE IN THE USE OF COMPOSITE MATERIALS FOR CRITICAL APPLICATIONS
- REDUCED WEIGHT AND COST DUE TO LESS CONSERVATIVE DESIGNS
- REDUCED DEVELOPMENT COSTS AND SHORTER LEAD TIMES.
Champ scientifique (EuroSciVoc)
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Données non disponibles
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Données non disponibles
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Coordinateur
BS12 7QE Filton
Royaume-Uni
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.