Objective
- To demonstrate the feasibility of very high bitrate (up to 20 Gbit/s) optical transmission systems in the core network.
- To acquire the basic physical and technical knowledge necessary for system design at such bit rates.
The main objectives of the research are:
to demonstrate the feasibility of very high bit rate (up to 20 gigabits per second) optical transmission systems in the transit network;
to acquire the basic physical and technical knowledge necessary for system design at such bit rates.
The research involves:
practical experimentation to determine limits concerning bit rate and transmission span, aiming at a bit rate of 20 gigabits per second using optical and electrical time division multiplexing and demultiplexing and direct detection schemes;
theoretical studies and transmission system feasibility experiments at data rates above 10 gigabits per second over dispersive optical fibres, especially standard single mode fibres at 1.5 um laser wavelength;
the development and adaptation of electronic circuits and optical amplifiers for use in transmission systems.
Nonlinear pulse pattern propagation has been studied using numerical simulations in order to investigate 10 gigabits per second transmission in the 1550 nm window via standard single mode fibre (SMF).
Analytical calculations and numerical system simulations have yielded the dispersion limitations for several transmission schemes using linear propagation. System experiments at 10 gigabits per second via SMF in the 1550 nm window have yielded the dispersion limits for the direct intensity modulation and the external modulation approach. A new transmission method has been evaluated and a corresponding increase in the maximum repeaterless transmission span at 10 gigabits per second has been demonstrated to a record 151 km.
Technical Approach
This work is related to a previous RACE project R1051. In a laboratory testbed, the physical and technological limits concerning bitrate and link length will be explored using direct detection schemes and time division multiplexing techniques. A bitrate approaching 20 Gbit/s is envisaged for the demonstrator, to be assembled at the location of the co-ordinating partner towards the end of the project.
Amongst the main challenges foreseen are the generation and detection of high speed optical signals (>10 Gbit/s) and transmission via dispersive fibres. Various techniques to overcome the dispersion problem will be studied. Emphasis is placed on investigating the new method of dispersion supported transmission (DST). This allows high bitrate transmission over dispersive fibres using a directly modulated laser diode. To perform these experiments, it is necessary to determine how optical amplifiers can be characterised and adapted to system needs. Requirements for special components (e.g. semiconductor lasers) will be met from other RACE projects where possible. In addition to the consensus management process, liaison links have been established with projects R2006 (WELCOME) and R2015 (ARTEMIS).
Key Issues
- Practical determination of limits concerning bitrate and transmission span, when using TDM and direct detection.
- Theoretical studies and system feasibility experiments at 10 Gbit/s and above over dispersive optical fibres, especially standard single-mode fibres at 1.5 um laser wavelength.
- Development and adaptation of electronic circuits and optical amplifiers for use in the transmission systems.
- Field experiment with the DST method.
Expected Impact
TRAVEL's results are expected to have a major impact on the design of future STM-64 optical systems through contributions to standardisation bodies (ITU-T and ETSI).
The main application areas will be high quality inter-studio links for transmission of uncompressed HDTV, feeder lines for the provision of high quality signals for fibre to the curb or fibre to the home (HD)TV distribution systems, and transit lines for telecom applications in the trunk network and for interface with submarine systems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences physical sciences optics fibre optics
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Data not available
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Data not available
Coordinator
70435 Stuttgart
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.