Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Coherent trajectories through symmetry breaking transitions

Objective

We propose to investigate the coherent trajectories of many-body systems undergoing symmetry-breaking transitions (SBTs) in real time, where trajectories are meant here in a mathematical sense used to describe the dynamics of nonlinear systems. The key idea which makes this project possible is the development of a specific femtosecond laser spectroscopy technique which allows us to distinguish the order parameter dynamics in complex matter systems from hot-electron energy relaxation, quasiparticle recombination processes, damping and dephasing of coherent phonon oscillations. This allows real-time high resolution investigations of the critical system trajectories through SBTs, beyond the capabilities of current state of the art time-resolved techniques. We will investigate coherent collective field oscillations and the fundamentals of topological defect creation by the Kibble-Zurek mechanism including a study of their annihilation in the aftermath of SBTs. We will aim to control the coherent trajectories at bifurcation points by laser pulses and external fields. We will address fundamental questions on the effect of symmetry and fundamental interactions of underlying microscopic vacua on global behaviour. Systems included in our study belong to a number of different universality classes and include the study of nontrivial transitions to newly discovered hidden states of matter. In the general framework of reductionism, we expect our findings to have fundamental bearing on our understanding of SBTs revealing predictive tell-tale signatures of critical events of relevance in areas beyond many-body condensed matter physics, in elementary particle physics, primordial cosmological events and tipping points in nonlinear systems. Transition trajectories to and from hidden states are of particular interest for practical applications in new femtosecond state change memory devices.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-ADG_20120216
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

INSTITUT JOZEF STEFAN
EU contribution
€ 1 206 627,50
Address
Jamova 39
1000 Ljubljana
Slovenia

See on map

Region
Slovenija Zahodna Slovenija Osrednjeslovenska
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0