Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenuto archiviato il 2024-06-18

Coherent trajectories through symmetry breaking transitions

Obiettivo

We propose to investigate the coherent trajectories of many-body systems undergoing symmetry-breaking transitions (SBTs) in real time, where trajectories are meant here in a mathematical sense used to describe the dynamics of nonlinear systems. The key idea which makes this project possible is the development of a specific femtosecond laser spectroscopy technique which allows us to distinguish the order parameter dynamics in complex matter systems from hot-electron energy relaxation, quasiparticle recombination processes, damping and dephasing of coherent phonon oscillations. This allows real-time high resolution investigations of the critical system trajectories through SBTs, beyond the capabilities of current state of the art time-resolved techniques. We will investigate coherent collective field oscillations and the fundamentals of topological defect creation by the Kibble-Zurek mechanism including a study of their annihilation in the aftermath of SBTs. We will aim to control the coherent trajectories at bifurcation points by laser pulses and external fields. We will address fundamental questions on the effect of symmetry and fundamental interactions of underlying microscopic vacua on global behaviour. Systems included in our study belong to a number of different universality classes and include the study of nontrivial transitions to newly discovered hidden states of matter. In the general framework of reductionism, we expect our findings to have fundamental bearing on our understanding of SBTs revealing predictive tell-tale signatures of critical events of relevance in areas beyond many-body condensed matter physics, in elementary particle physics, primordial cosmological events and tipping points in nonlinear systems. Transition trajectories to and from hidden states are of particular interest for practical applications in new femtosecond state change memory devices.

Invito a presentare proposte

ERC-2012-ADG_20120216
Vedi altri progetti per questo bando

Meccanismo di finanziamento

ERC-AG - ERC Advanced Grant

Istituzione ospitante

INSTITUT JOZEF STEFAN
Contributo UE
€ 1 206 627,50
Indirizzo
Jamova 39
1000 Ljubljana
Slovenia

Mostra sulla mappa

Regione
Slovenija Zahodna Slovenija Osrednjeslovenska
Tipo di attività
Research Organisations
Ricercatore principale
Dragan Mihailovic (Prof.)
Contatto amministrativo
Jadran Lenarčič (Prof.)
Collegamenti
Costo totale
Nessun dato

Beneficiari (2)