Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Chromosome inheritance from mammalian oocytes to embryos

Objective

One of the most dramatic transitions in biology is the oocyte-to-zygote transition. This refers to the maturation of the female germ cell or oocyte, which undergoes two rounds of meiotic chromosome segregation and, following fertilization, is converted to a mitotically dividing embryo. We aim to establish an innovative research program that addresses fundamental questions about the molecular processes controlling the mammalian oocyte-to-zygote transition to ensure faithful inheritance of genomes from one generation to the next. We are taking an interdisciplinary approach combining germ cell and chromosome biology with cell cycle and epigenetic studies to understand how maternal factors regulate chromosome segregation in oocytes and chromatin organization in the zygote. A molecular understanding of key players regulating these processes is a requisite step for investigating how their deterioration contributes to maternal age-related aneuploidy and infertility. Aneuploidy is the leading cause of mental retardation and spontaneous miscarriage. The current trend towards advanced maternal age has increased the frequency of trisomic fetuses by 71% in the past ten years. A better understanding of mammalian meiosis is therefore relevant to human reproductive health.

A special feature of the female germ line is that meiotic DNA replication occurs in the embryo but oocytes remain arrested until the first meiotic division is triggered months (mouse) or decades (human) later. The longevity of oocytes poses a challenge for the cohesin complex that must hold together sister chromatids from DNA synthesis until chromosome segregation. We specifically aim to: 1) elucidate how sister chromatid cohesion is maintained in mammalian oocytes, 2) identify mechanisms regulating cohesion in young and aged oocytes, and 3) investigate how the inheritance of genetic and resetting of epigenetic information is coordinated with cell cycle progression at the oocyte-to-zygote transition.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH
EU contribution
€ 1 499 738,00
Address
DR BOHRGASSE 3
1030 WIEN
Austria

See on map

Region
Ostösterreich Wien Wien
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0