Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenu archivé le 2024-06-18

Emerging electronic states and devices based on Mott insulator interfaces

Objectif

Transition metal oxides possess a broad range of functionalities (superconductivity, magnetism, ferroelectricity, multiferroicity) stemming from the interplay between structural effects and electronic correlations. Recent work has revealed exciting physics at their interfaces, including two-dimensional (2D) conductivity and superconductivity in the electron gas that forms at the interface between two band insulators, LaAlO3 and SrTiO3. However, to date, no interfacial system has truly shown electronic properties that are absent from the phase diagram of both bulk constituents. I argue that to fully embrace the immense potential of oxide interfaces and unveil unprecedented electronic phases, combining insulators with stronger electronic correlations is mandatory.

At the crossroad between strongly-correlated electron physics, microelectronics and spintronics, the MINT project will pioneer routes toward a new realm of solid-state physics. MINT will harness electronic and magnetic instabilities in correlated oxides to craft new electronic phases controllable by external stimuli. These phases will be generated by the synergic action of strain engineering, interfacial charge/orbital/spin reconstruction and octahedra connectivity control, using rare-earth titanate RTiO3 Mott-Hubbard insulators as templates.

Emerging states that are foreseen include 2D electron gases with ferroic order, superconductivity at relatively high temperature, topological states and new forms of multiferroicity and magnetoelectric coupling. The discovery of any of these new states would represent a major breakthrough in oxide electronics. They will open possibilities for innovative devices yielding giant electroresistance without ferroelectrics, and new schemes to control spin currents by electric fields.

At full term, MINT will establish whether oxide interfaces will live up to their expectations and start in the coming decades a technological revolution comparable to that of silicon.

Appel à propositions

ERC-2013-CoG
Voir d’autres projets de cet appel

Régime de financement

ERC-CG - ERC Consolidator Grants

Institution d’accueil

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contribution de l’UE
€ 1 998 026,40
Adresse
RUE MICHEL ANGE 3
75794 Paris
France

Voir sur la carte

Région
Ile-de-France Ile-de-France Paris
Type d’activité
Research Organisations
Chercheur principal
Manuel Alain Bibes (Dr.)
Contact administratif
Bertrand Minault (Mr.)
Liens
Coût total
Aucune donnée

Bénéficiaires (1)