Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

3D Bioprinting of JOINT Replacements

Objective

The world has a significant medical challenge in repairing injured or diseased joints. Joint degeneration and its related pain is a major socio-economic burden that will increase over the next decade and is currently addressed by implanting a metal prosthesis. For the long term, the ideal solution to joint injury is to successfully regenerate rather than replace the damaged cartilage with synthetic implants. Recent advances in key technologies are now bringing this “holy grail” within reach; regenerative approaches, based on cell therapy, are already clinically available albeit only for smaller focal cartilage defects.
One of these key technologies is three-dimensional (3D) bio-printing, which provides a greatly controlled placement and organization of living constructs through the layer-by-layer deposition of materials and cells. These tissue constructs can be applied as tissue models for research and screening. However, the lack of biomechanical properties of these tissue constructs has hampered their application to the regeneration of damaged, degenerated or diseased tissue.

Having established a cartilage-focussed research laboratory in the University Medical Center Utrecht, I have addressed this biomechanical limitation of hydrogels through the use of hydrogel composites. Specifically, I have pioneered a 3D bio-printing technology that combines accurately printed small diameter thermoplast filaments with cell invasive hydrogels to form strong fibre-reinforced constructs. This, in combination with bioreactor technology, is the key to the generation of larger, complex tissue constructs with cartilage-like biomechanical resilience. With 3D-JOINT I will use my in-depth bio-printing and bioreactor knowledge and experience to develop a multi-phasic 3D-printed biological replacement of the joint.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-CoG

See all projects funded under this call

Host institution

UNIVERSITAIR MEDISCH CENTRUM UTRECHT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 901 871,00
Address
HEIDELBERGLAAN 100
3584 CX Utrecht
Netherlands

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 901 871,00

Beneficiaries (2)

My booklet 0 0