Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Ultrasensitive chiral detection by signal-reversing cavity polarimetry: applications to in-situ proteomics, single-molecule chirality, HPLC analysis, medical diagnostics, and atmospheric studies

Objective

Chirality is a fundamental property of life, making chiral sensing and analysis crucial to numerous scientific subfields of biology, chemistry, and medicine, and to the pharmaceutical, chemical, cosmetic, and food industries, constituting a market of 10s of billion €, and growing.
Despite the tremendous importance of chiral sensing, its application remains very limited, as chiroptical signals are typically very weak, preventing important biological and medical applications. Recently, the project-coordinating FORTH team has introduced a new form of Chiral-Cavity-based Polarimetry (CCP) for chiral sensing, which has three groundbreaking advantages compared to commercial instruments: (a) The chiroptical signals are enhanced by the number of cavity passes (typically ~1000); (b) otherwise limiting birefringent backgrounds are suppressed;
(c) rapid signal reversals give absolute polarimetry measurements, not requiring sample removal for a null-sample measurement. Together, these advantages allow improvement in chiral detection sensitivity by 3-6 orders of magnitude (depending on instrument complexity and price). ULTRACHIRAL aims to revolutionize existing applications of chiral sensing, but also to instigate important new domains which require sensitivities beyond current limits, including: (1) measuring protein structure in-situ, in solution, at surfaces, and within cells and membranes, thus realizing the “holy-grail” of proteomics; (2) coupling to high performance liquid chromatography (HPLC) for chiral identification of the components of complex mixtures, creating new standards for the pharmaceutical and chemical analysis industries; (3) chiral analysis of human bodily fluids as a diagnostic tool in medicine; (4) measurement of single-molecule chirality, by adapting CCP to microresonators, which have already demonstrated single-molecule detection; and (5) real-time chiral monitoring of terpene emissions from individual trees and forests, as a probe of forest ecology.

Call for proposal

H2020-FETOPEN-2016-2017

See other projects for this call

Sub call

H2020-FETOPEN-1-2016-2017

Coordinator

IDRYMA TECHNOLOGIAS KAI EREVNAS
Net EU contribution
€ 722 500,00
Address
N PLASTIRA STR 100
70013 Irakleio
Greece

See on map

Region
Νησιά Αιγαίου Κρήτη Ηράκλειο
Activity type
Research Organisations
Links
Total cost
€ 722 500,00

Participants (7)