Objective
Two major hardware trends have a significant impact on the architecture of database management systems (DBMSs): First, main
memory sizes continue to grow significantly. Machines with 1TB of main memory and more are readily available at a relatively low
price. Second, the number of cores in a system continues to grow, from currently 64 and more to hundreds in the near future.
This trend offers radically new opportunities for both business and science. It promises to allow for information-at-your-fingertips, i.e. large volumes of data can be
analyzed and deeply explored online, in parallel to regular transaction processing. Currently, deep data exploration is performed
outside of the database system which necessitates huge data transfers. This impedes the processing such that real-time interactive
exploration is impossible. These new hardware capabilities now allow to build a true computational database system that integrates deep exploration functionality at the source
of the data. This will lead to a drastic shift in how users interact with data, as for the first time interactive data exploration
becomes possible at a massive scale.
Unfortunately, traditional DBMSs are simply not capable to tackle these new challenges.
Traditional techniques like interpreted code execution for query processing become a severe bottleneck in the presence of
such massive parallelism, causing poor utilization of the hardware. I pursue a radically different approach: Instead of adapting the
traditional, disk-based approaches, I am integrating a new just-in-time compilation framework into the in-memory database that
directly exploits the abundant, parallel hardware for large-scale data processing and exploration. By explicitly utilizing
cores, I will be able to build a powerful computational database engine that scales the entire spectrum of data processing - from
transactional to analytical to exploration workflows - far beyond traditional architectures.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences software
- natural sciences computer and information sciences databases
- natural sciences computer and information sciences data science data processing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80333 Muenchen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.