Objective
Photovoltaic conversion has the extraordinary property of transforming the solar energy directly into electric power. However, the available electrical power is known to be severely limited by the so-called Shockley-Queisser (SQ) photoconversion limit. The maximum efficiency for a single absorber is limited as photons with energy lower than the bandgap (BG) cannot be absorbed, and just an energy equivalent to the BG can be used for photons with higher energy than the BG, due to thermalization. Tandem cells have overcome this SQ limit upon exploiting complex and expensive configurations. Alternative approaches, even with higher potentiality, as Intermediate Bandgap Solar Cells (IBSCs) have not reached the expected performance mainly due to the limitations introduced by the monocrystalline matrix. The incorporation of quantum dots (QD) to create the IB produces layer strain and defects that limit the cell performance. No-LIMIT proposes to revamp IBSCs concept, using polycrystalline halide perovskites (HP) host matrix in order to take benefit from the strain relaxation at polycrystalline materials and from HP benign defect physics. HPs show an outstanding performance even when they are grown in a porous structure, indicating that their excellent transport and recombination properties are preserved with embedded materials. No-LIMIT will exploit this potentiality by using the states of embedded QD as IB in IBSC with HP matrix. The project will focus on the preparation of HPs-QD systems with enhanced light collection efficiency preserving charge transport, recombination and stability. No-LIMIT will study the properties and interactions of the HP and QD materials developed, as well as injection, recombination and transport properties in the coupled system. The combination of these strategies will build a ground-breaking synergistic system able to break the SQ limit. The achievements of IBSC, together with the intermediate steps, will have a colossal impact on photovoltaics
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering electric energy
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- engineering and technology environmental engineering energy and fuels renewable energy solar energy photovoltaic
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
12006 Castellon De La Plana
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.