Objective
RNA silencing relies on small RNAs that act in RNA induced silencing complexes (RISCs). RISCs use base pairing to select mRNAs or invading nucleic acids such as viruses for repression. RNA silencing may facilitate gene expression changes, for example in host-pathogen interactions. Such changes require reprogramming of RISC, since a different set of RNAs must be rapidly repressed upon pathogen perception. RISC reprogramming is non-trivial: new small RNAs must be produced and be rapidly incorporated into RISC, while unwanted repression by pre-existing RISCs must be eliminated. This project focuses on understanding three central aspects of RISC reprogramming in plant-pathogen interactions. First, we will define mechanisms that allow invading RNA, but not self-RNA, to engage in positive feedback loops for small RNA synthesis, and we will investigate the specific importance of these positive feedback loops in antiviral defense. Second, we will explore how rapid proteolysis of the central RISC component ARGONAUTE1 (AGO1) governs rapid incorporation of newly synthesized small RNA. We will also explore the hypothesis that non-RNA bound AGO1 is degraded to minimize vulnerability to pathogens that use small RNAs as virulence factors to repress host immune signaling. The relevance of these mechanisms of AGO1 proteolysis in plant immunity will be investigated. These studies take advantage of our recent discovery of proteins required specifically for turnover of AGO1. Finally, we explore the hypothesis that rapid chemical modification of mRNA by N6-adenosine methylation (m6A) may bring mRNAs with poor small RNA binding sites under RISC repression. This scenario is supported by interactions between m6A reader proteins and AGO1 discovered in current work in the group. This mechanism may enable reprogramming of RISC specificity rather than composition upon pathogen perception. Our project will fill gaps in knowledge on RNA silencing and elucidate their importance in plant immunity.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules nucleic acids
- natural sciences biological sciences microbiology virology
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences biological sciences genetics RNA
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1165 KOBENHAVN
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.