Objective
In this project we will study and exploit the properties of 3D topological insulator (TI) materials incorporated into high frequency devices. The main driver of the project is the prospect of using a TI nanoribbon to create a topologically protected single-electron charge pump that can be used as a metrological quantum current standard, or in other words to lay the technological foundations for a TI-based device that can realize the SI Ampere. An accurate charge pump that can operate at temperatures and magnetic fields achievable using affordable table-top systems would be of immediate use in the realization of the Ampere. The technological development in this project will lay the groundwork or charge pumping in TI nanoribbons, as well as for other devices that exploit the unique properties of TI for high-frequency applications including sensing, precision measurement and topologically protected quantum computation.
Materials science has always been intertwined with the development of new electronic devices and new innovations are rapidly adopted by industry and the research community if it is shown that they enable novel functionality or economic benefits. Topological insulators is an example of a new class of quantum materials that is on the cusp of finding applications in electronic devices. Focus so far has mostly been on improving our understanding of the many fascinating properties of TI materials, but it is now becoming clear that they possess electronic properties that make them interesting for a wide range of applications.
In order to make the greatest possible headway towards this ambitious goal we will assemble a team with complementary expertise in materials science, device physics, microwave measurements, condensed matter theory and electrical metrology. This consortium will have full access to state-of-the art facilities for fabrication, analysis and measurement of TI based high-frequency devices.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
412 96 GOTEBORG
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.