Objective
Metal nanostructures show pronounced electromagnetic resonances that arise from localized surface plasmons. These collective oscillations of free electrons in the metal give rise to confined electromagnetic near fields. Surface-enhanced spectroscopy exploits the near-field intensity to enhance the optical response of nanomaterials by many orders of magnitude.
Plasmons are classified as bright and dark depending on their interaction with far-field radiation. Bright modes are dipole-allowed excitations that absorb and scatter light. Dark modes are resonances of the electromagnetic near field only that do not couple to propagating modes. The suppressed photon emission of dark plasmons makes their resonances spectrally narrow and intense, which is highly desirable for enhanced spectroscopy as well as storing and transporting electromagnetic energy in nanostructures. The suppressed absorption, however, prevents us from routinely exploiting dark modes in nanoplasmonic systems.
I propose using spatially patterned light beams to excite dark plasmons with far-field radiation. By this I mean a beam profile with varying polarization and intensity that will be matched to the dark electromagnetic eigenmode. My approach activates the excitation of dark modes, while their radiative decay remains suppressed. I will show how to harvest dark modes for surface-enhanced Raman scattering providing superior intensity and an enhancement that is tailored to a specific vibration. Another feature of dark modes is their strong coupling to the vibrations of nanostructures. I will use this to amplify vibrational modes and, ultimately, induce phonon lasing.
The proposed research aims at an enabling technology that unlocks a novel range of nanoplasmonic properties. It will put dark plasmons on par with the well-recognized bright modes to be used in fundamental science and for applications in analytics, optoelectronic, and nanoimaging.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences condensed matter physics quasiparticles
- natural sciences physical sciences atomic physics
- engineering and technology nanotechnology nano-materials
- natural sciences physical sciences theoretical physics particle physics photons
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
14195 Berlin
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.