Objective
Duplicate genes are important in disease, are a hugely important source of evolutionary novelty, and for many years we thought we understood them. We thought that duplication relieved selective constraints. We thought that gene knockout neutrality was due to redundancy. We thought that a duplicate is a duplicate is a duplicate. Evidence is accumulating challenging each of these views. Rather than being the result of an unbiased process, the genes that tend to duplicate in our genome and others are quickly evolving, non-essential genes, irrespective of current duplication status. Conversely, genes retained after whole genome duplication (WGD) are slowly evolving, important genes.
I propose that different resolution of the evolutionary constraints imposed by the demands of gene expression can explain these contrasting relationships. I propose that the opposing constraints on gene-by-gene duplications as compared to WGD channel these different sets of genes into remarkably different evolutionary trajectories. In particular, in much the same way that individual gene duplication creates an opportunity for the evolution of a new gene, the co-evolution of expression of sets of interacting genes after WGD creates an opportunity for the evolution of new biochemical pathways and protein complexes. Furthermore, I suggest a common mechanism of pathogenicity for many duplication events independent of the biochemical function of the encoded genes.
With the availability of abundant high-quality genomics data, now is an opportune time to address these questions. Primarily through computational and statistical analysis I will reveal the relationship between gene duplication and expression and test a model that the indirect costs of gene expression are a major determinant of the outcome of gene duplication. I will explore the effects this has on gene and genome evolution. Finally, I will link the patterns of gene expression and duplicability to pathogenic effects.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences biological sciences evolutionary biology
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
D02 CX56 Dublin
Ireland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.