Project description
Directed protein evolution in the blink of an eye
Natural evolution took billions of years to generate the macromolecules we know today through cycles of mutation and selection. Mimicking this process in the lab has the potential to produce novel proteins or enzymes of interest for industrial and medical applications. To achieve this, the EU-funded EVOdrops project proposes to introduce a rapid method of genetic diversity generation alongside a microfluidics-based approach for screening and selecting enzyme variants of interest. The project brings together experts in the field of protein engineering and microfluidics who will train young researchers in biotechnology and biomedical applications.
Objective
Natural evolution is a powerful process that has given rise to the functionally diverse set of proteins present in all living systems. Repetitive rounds of mutation, selection and amplification have optimised nature’s catalysts, the enzymes, to perform an enormous range of different reactions. However, natural evolution has driven the optimisation of enzymes subjected to living functions of microorganisms, according to ill-defined and fluctuating external conditions and is not suitable
for industrial processes since it lacks of control of selection pressure. In EVOdrops, we will use directed evolution to overcome these limitations. It is a synthetic, man-made approach of evolution, aiming at improving living systems based on predefined needs, controlling the external selection pressure. While natural evolution took billions of years to optimise
macromolecules, directed evolution – to be efficient in an industrial process – requires both the generation of genetic diversity and ultra-high throughput screening capabilities to recover the variants of interest. We will develop and optimise these tools using the ground-breaking potential of droplet-based microfluidics for high-throughput experimentation and the
fine control of gene library construction. EVOdrops, a European training network, will bring together the leading research scientists, laboratories and industries in Europe with outstanding expertise in protein engineering and microfluidics and 13 early stage researchers. We will offer an extensive multi- and interdisciplinary training to ensure that they can solve these urgent and unmet challenges in biotechnology and biomedicine. We will use a multidisciplinary approach combining soft matter, microfluidics and chemical biology to design solutions for the selection of new enzymes of industrial and therapeutic interest. In the future, our approaches can be generalised to challenges involving high-throughput miniaturised biochemical or cell-based assays.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences classical mechanics fluid mechanics microfluidics
- natural sciences physical sciences condensed matter physics soft matter physics
- natural sciences biological sciences genetics mutation
- natural sciences biological sciences microbiology
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-ITN - Marie Skłodowska-Curie Innovative Training Networks (ITN)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-ITN-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
G12 8QQ Glasgow
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.