Project description
Here comes LiFi for the Internet of Things
The data rate, reliability and latency of wireless connections will be stressed by increasing the number of devices communicating at higher speed in the Internet of Things (IoT). If many IoT devices communicate in a confined space, the demand for wireless spectrum will increase faster than expected for current internet services. The EU-funded ELIOT project, a 10-partner, 36-month project led by the Fraunhofer Heinrich Hertz Institute, will develop mass market solutions for the IoT using LiFi, a next generation wireless communication network, travelling over light instead of radio waves. With LiFi, the ELIOT consortium develops a new networked mobile communication technology operating in the previously unused light spectrum, into which IoT traffic can be offloaded from Wi-Fi and cellular radio.
Objective
So far, the Internet of Things (IoT) is narrowband with no latency constraints. A wider range of applications is envisioned for industrial manufacturing, augmented reality and autonomous cars. It makes use of artificial intelligence, where compute functions will be offloaded from devices into the cloud. Accordingly, future IoT will need wireless links with high data rates, low latency and reliable connectivity despite the limited radio spectrum. Connected lighting is an interesting infrastructure for IoT services because it enables visible light communication (VLC), i.e. a wireless communication using unlicensed light spectrum. LED luminaires have enough modulation bandwidth for high data rates and each luminaire can be used as a wireless access point. Networked VLC-enhanced luminaires will add new features to build a wireless network for the IoT. ELIOT will start from existing prototypes and develop the support for IoT services. The project will integrate the lighting infrastructure with VLC and add positioning, multicast communications and enhanced security. ELIOT will demonstrate the new infrastructure in real environments at TRL ≥6 and mobile IoT devices at TRL ≥ 4. Main project goals are to provide an open reference architecture for the support of IoT in the lighting infrastructure, build consensus reflecting the best architectural choices, contribute to standardization of lighting and telecom infrastructures in IEC, IETF, IEEE and ITU-T and provide a roadmap for IoT until 2022 and beyond. ELIOT brings together Europe’s key players that cover the whole value chain, i.e. OSRAM, Philips Lighting and Tridonic as major component and luminaire makers, Maxlinear as chipmaker, NOKIA as a leading network vendor and integrator, BMW, Weidmüller and Thyssen Krupp working on industrial IoT, Deutsche Telekom and KPN as innovative operators, together with Fraunhofer HHI as a leading research institute and two top universities from Eindhoven and Oxford.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences artificial intelligence
- engineering and technology mechanical engineering vehicle engineering automotive engineering autonomous vehicles
- natural sciences computer and information sciences internet internet of things
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
IA - Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-ICT-2018-20
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80686 Munchen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.