Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

High Temperature Characterization and Modelling of Thermoplastic Composites

Project description

The hottest new materials in the aerospace sector are put to the test

The European aerospace sector utilises low-weight, high-performance thermoset plastic composites in many applications. More recently, thermoplastics have garnered attention as alternatives to thermoset plastics. They can be melted again, remoulded, reprocessed, and recycled. Thermoset plastics, in addition to reduced recoverability, require an extra curing step to harden and set. Given their ability to melt and deform when reheated, to fully exploit thermoplastics in the aerospace industry, it is important to characterise their behaviour when subjected to heat, fire, and mechanical loading. HITCOMP is developing a practical test lab to evaluate materials, the data from which will inform a finite elements model to support the virtual testing of thermoplastics for comparison to the currently used conventional thermoset epoxy-based plastics.

Objective

Heat and fire cause more damage on composites than on metallic counterparts. In order to improve the current epoxy based composites behavior under thermal affection, an alternative is going be addressed: thermoplastic composites.
Additionally, the sector is making a transition to a more electric aircraft, increasing the thermal affection on the structure since the number of heat & fire sources.
Hence, there are several reasons behind the drastic shift from aluminum and steel to thermoplastics: weight reduction, better fuel economy and lower operation costs, emissions reduction, corrosion and fatigue resistance or, in some cases, flame resistance and retardancy .
The framework of this topic is AIRFRAME ITD Work Package B-2.1 and B-2.2 whose objective is to achieve lighter and more cost effective structures. In this line, current tendency at A/C level is to increase the structural contribution of the more efficient composites substituting metallic structures, developing fuselages with optimized usage of volume and minimized weight, cost and environmental impact.
Under this framework, the research project HITCOMP aims to characterize the behaviour, under fire and thermal affection, of new high performance thermoplastic composites based on PAEK family resins, for comparison to the current thermoset, epoxy based, composites. HITCOMP aims as well to establish an innovative methodology allowing an affordable characterization of thermoplastics and the prediction of their behaviour and resistence when submitted to fire or high temperature events and to mechanical load. For this purpose, a thermo-mechanical model based on FEM permitting an innovative “virtual” characterization of specimens will be developed. An innovative testing lab based on two co-registrated IR cameras will be developed too. It will allow accurate, non-intrusive measurements of the actual temperature of both sides of the samples during the fire tests and for the adjustment and validation of the model.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CS2-RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-CS2-CFP09-2018-02

See all projects funded under this call

Coordinator

UNIVERSIDAD CARLOS III DE MADRID
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 259 986,25
Address
CALLE MADRID 126
28903 Getafe (Madrid)
Spain

See on map

Region
Comunidad de Madrid Comunidad de Madrid Madrid
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 259 986,25

Participants (2)

My booklet 0 0