Objective
Magnetic field sensing is a wide and important area of research and technological development in which every new magnetic or spintronic phenomenon discovered there would be an attempt to exploit it for magnetic sensing applications with improved cost-performances. Magnetoresistance is the ratio of the electrical resistance of a material with and without an applied magnetic field. This effect together with anisotropic magnetoresistance has led to a wide range of compact and high-sensitivity magnetic sensors for diverse areas of applications: Geophysics, Astronomics, Archeology, Health Care, and Data Storage. The basic physics of these effects are included in emergent field of Spintronic, field of knowledge that deals with the generation, propagation, processing and detection of spin currents. New effects appear with the spin currents as a central property like Spin Hall magnetoresistance (SMR) in hybrid materials ferromagnet/nonmagnetic metal; and other related phenomena: the Spin Hall Effect (SHE) and the Spin Seebeck Effect (SSE) where thermal sensing emerges. If we combine spintronic materials with multiferroic one’s new functionalities can be exploited where electric-field controls spin currents. These effects can be implemented in new strategies to design nanoscale devices. The development of both types of sensorsn thermal and magnetic sensors shares basic principles of spintronic, then we propose to work in ULTIMATE-I project with new hybrid combination of materials in which to better perform the spin to charge conversion, control of spin currents and producing sensor prototypes with outstanding performance. ULTIMATE-I project involves twelve partners with a strong background on spintronic, magnetic and multiferroic materials from EU and Third Countries, which will dedicate to solve common problems in nanomagnetism, generation and manipulation of spin currents, that affect the detection and sensitivity of sensors.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- humanities history and archaeology archaeology
- natural sciences earth and related environmental sciences geophysics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.3. - Stimulating innovation by means of cross-fertilisation of knowledge
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-RISE - Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-RISE-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
50009 ZARAGOZA
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.