Project description
Cyclacenes, ring-shaped carbon compounds, synthesised for the first time
Cyclacenes are hoop-like polycyclic compounds where aromatic moieties are fused together to form ring structures. The unique chemical, electronic and structural properties of these ring-shaped carbon compounds render them attractive for use in organic electronics and spintronics. Despite decades of research efforts, it has not yet been possible to produce even a single representative of this substance class. The ERC-funded TACY project will pioneer new synthetic strategies to generate cyclacenes. The proposed approach is highly modular, allowing to structurally vary the belt-type precursors, and thus the cyclacenes, by placing different substituents at the rims. Project research, combined with state-of-the-art computational activities and molecular characterisation techniques, will provide unprecedented insight into the structure-property relationship of the conjugated zigzag topology in cyclacenes.
Objective
Cyclacenes, i.e. cyclic versions of acenes consisting of linearly fused benzene rings, were first discussed in 1954 by Heilbronner, but - despite considerable synthetic efforts over decades - have remained an elusive class of compounds. Theoretical investigations suggest that cyclacenes are highly reactive due to pronounced polyradical character and significant ring strain. All prior attempts to synthesise cyclacenes failed, mainly because the final synthetic step of establishing a fully conjugated π-system was energetically prohibitive. Despite these challenges, cyclacenes remain intriguing synthetic targets because of their unique chemical, electronic, and structural properties as well as their potential applications in organic (opto-)electronics or spintronics. In this collaborative project, we will develop novel synthetic approaches, which synergistically combine efficient and high-yielding synthetic strategies of belt-type precursors that we will transform to cyclacenes by extrusion of suitable leaving groups under cryogenic matrix isolation conditions, on surfaces, in the solid state, and ultimately even in solution. Our synthetic approach is highly modular and allows to structurally vary the belt-type precursors, and thus the cyclacenes, by placing different substituents at the rims, including peri-annulation or isosteric substitution of CH units by heteroatoms. This research, combined with state-of-the-art computational investigations and characterization even on the single-molecule level, will provide unprecedented insight into the structure-property relationship of the fully conjugated zigzag topology present in cyclacenes and address fundamental questions of chemical reactivity and the interplay of aromaticity, strain and polyradical character. This knowledge will finally allow us to synthesise interlocked structures based on cyclacenes and to apply cyclacenes in controlled reactions on surfaces for creating further elusive materials such as polyacenes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
This project's classification has been validated by the project's team.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC-SYG - HORIZON ERC Synergy Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-SYG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
69117 Heidelberg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.