Project description
A revolutionary approach to monitoring emissions
Climate change threatens with unpredictable environmental consequences unless we tackle greenhouse gas (GHG) emissions head-on. The challenge? Measuring global GHG emissions accurately and uncovering unknown sources. This remains exceedingly difficult, and current inventories rely on imprecise bottom-up calculations. Funded by the European Research Council, the CoSense4Climate project will leverage the mathematical theory of compressed sensing (CS). The aim is to revolutionise atmospheric inversion. By harnessing the power of CS, typically used in signal and image processing, the project promises unmatched accuracy in quantifying and locating GHG emitters while requiring less data. Overall, it seeks to establish a new standard in GHG emission monitoring, offering new hope in the fight against climate change.
Objective
Climate change is a defining issue of our time. Without significant, rapid greenhouse gas (GHG) emission reductions, we will face unpredictable consequences for climate and life. To effectively reduce GHGs, the emissions must be accurately quantified and unknown emitters found. However, measuring global GHG emissions is very challenging, and hence current emission inventories rely mostly on bottom-up calculations, which lack accuracy and the ability to detect unknown sources.
In CoSense4Climate, I will use the powerful mathematical theory of compressed sensing (CS) to revolutionize atmospheric inversion. My goal is to develop a method to locate, quantify, and attribute GHG emitters with unmatched spatial resolution and accuracy. CS has been used with great success in signal and image processing by taking advantage of the fact that most signals contain redundancies. Using CS in combination with domain transformations, I will generate accurate high resolution emission fields and reveal unknown sources, yet require less data than conventional methods. I will develop a CS inversion framework not only for local sensor data, but also for satellite data, which, upon success, will lead to a breakthrough in monitoring urban GHG emissions globally.
I am best suited to reach this goal. I have gathered a unique dataset with my fully automated differential column GHG network MUCCnet, the first of its kind. With my rich experience in applying computational fluid dynamics (CFD), solar-induced fluorescence (SIF), and machine learning (ML) for estimating GHG emissions, I will additionally create a high-resolution CFD-based atmospheric transport model, a satellite SIF-based urban CO2 biogenic flux model, and a ML method for source attribution based on ratios of GHG and air pollutant concentrations.
CoSense4Climate will establish a new standard for GHG emission monitoring, and provide ground-breaking scientific methods to help solve one of todays most urgent problem: climate change.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering satellite technology
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
- atmospheric science
- urban greenhouse gas emissions
- compressed sensing
- computational fluid dynamics
- solar-induced fluorescence
- machine learning
- sensor network
- atmospheric measurements
- atmospheric inverse modeling
- atmospheric transport modeling
- biogenic fluxes
- particle dispersion modeling
- ground based remote sensing
- satellite remote sensing
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80333 Muenchen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.