Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Compressed Sensing for Climate: A Novel Approach to Localize, Quantify and Characterize Urban Greenhouse Gas Emitters

Descrizione del progetto

Un approccio rivoluzionario al monitoraggio delle emissioni

I cambiamenti climatici minaccino di avere conseguenze ambientali imprevedibili se non affrontiamo di petto le emissioni di gas a effetto serra. La sfida? Misurare accuratamente le emissioni globali di gas serra e scoprire le fonti sconosciute. Si tratta di un compito ancora molto difficile e gli inventari attuali si basano su imprecisi calcoli dal basso verso l’alto. Il progetto CoSense4Climate, finanziato dal Consiglio europeo della ricerca, sfrutterà la teoria matematica del Compressed Sensing. L’obiettivo è rivoluzionare l’inversione atmosferica. Sfruttando la potenza del Compressed Sensing, tipicamente utilizzato nell’elaborazione dei segnali e delle immagini, il progetto promette un’accuratezza senza pari nella quantificazione e nella localizzazione delle emissioni di gas serra, pur richiedendo meno dati. Nel complesso, il progetto mira a stabilire un nuovo standard nel monitoraggio delle emissioni di gas serra, offrendo nuove speranze nella lotta ai cambiamenti climatici.

Obiettivo

Climate change is a defining issue of our time. Without significant, rapid greenhouse gas (GHG) emission reductions, we will face unpredictable consequences for climate and life. To effectively reduce GHGs, the emissions must be accurately quantified and unknown emitters found. However, measuring global GHG emissions is very challenging, and hence current emission inventories rely mostly on bottom-up calculations, which lack accuracy and the ability to detect unknown sources.
In CoSense4Climate, I will use the powerful mathematical theory of compressed sensing (CS) to revolutionize atmospheric inversion. My goal is to develop a method to locate, quantify, and attribute GHG emitters with unmatched spatial resolution and accuracy. CS has been used with great success in signal and image processing by taking advantage of the fact that most signals contain redundancies. Using CS in combination with domain transformations, I will generate accurate high resolution emission fields and reveal unknown sources, yet require less data than conventional methods. I will develop a CS inversion framework not only for local sensor data, but also for satellite data, which, upon success, will lead to a breakthrough in monitoring urban GHG emissions globally.
I am best suited to reach this goal. I have gathered a unique dataset with my fully automated differential column GHG network MUCCnet, the first of its kind. With my rich experience in applying computational fluid dynamics (CFD), solar-induced fluorescence (SIF), and machine learning (ML) for estimating GHG emissions, I will additionally create a high-resolution CFD-based atmospheric transport model, a satellite SIF-based urban CO2 biogenic flux model, and a ML method for source attribution based on ratios of GHG and air pollutant concentrations.
CoSense4Climate will establish a new standard for GHG emission monitoring, and provide ground-breaking scientific methods to help solve one of todays most urgent problem: climate change.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-ERC - HORIZON ERC Grants

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2022-COG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

TECHNISCHE UNIVERSITAET MUENCHEN
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 999 848,00
Indirizzo
Arcisstrasse 21
80333 Muenchen
Germania

Mostra sulla mappa

Regione
Bayern Oberbayern München, Kreisfreie Stadt
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 999 848,00

Beneficiari (1)

Il mio fascicolo 0 0