Project description
Improved diagnostics with new photonic sensor technology
Fast and accurate sensors measuring physical, chemical, biological or other parameters are fundamental in diverse sectors, including healthcare, food safety and environmental monitoring. The EU-funded PHOTONGATE project plans to develop an adaptive diagnostics solution comprising photonic cartridges and a read-out platform to quantify multiple analytes of the same or different nature in a single test. PHOTONGATE technology will rely on two core technologies: a biochemical technology (molecular gates) conferring high specificity and increased sensitivity, and a photonic technology (involving light interaction with local surface plasmonic resonance structures) as a transducer allowing analyte quantification. In addition, the PHOTONGATE platform will include a new optical concept, fully Europe-made, avoiding optical fibres and expensive optical components.
Objective
In the current world, there is a clear need of advanced multi-sensing systems capable of providing fast and quantitative detection of a huge range of hazards which could affect human health in our daily life. Sectors such as healthcare, food safety or environment control, among others, will require these tools to take fast and effective actions and prevent potential crisis impact. In this context, PHOTONGATE aims to develop an adaptable diagnostics solution, comprising Photonic cartridges and read-out platform, which allow to quantify multiple analytes of the same or different nature (biomolecules, chemicals, metals, bacteria, etc.) in a single test with levels of sensitivity and selectivity at/or over those offered by current commercial solutions. PHOTONGATE technology relies on a new sensing concept which combines two core technologies: a bio-chemical technology (molecular gates) which will confer the specificity and increased sensitivity to the system, and, on the other hand, a photonic technology (light interaction with Local Surface Plasmonic Resonance (LSPR) structures) working as transducers and allowing the quantification. PHOTONGATE consortium has been specifically designed for maximizing the project success since all the actors of the value chain are enrolled. In addition, the development and integration of the different PHOTONGATE components have been designed searching for the European autonomy by using European research, knowledge and fabrication networks as well as favoring European providers. PHOTONGATE goals will involve a significant progress beyond the State-of-the-Art in multi-sensing systems achieving faster and high sensitivity detection of multiples targets. A final validation of PHOTONGATE technology in relevant scenarios for health and food safety (TRL5) will be performed to demonstrate the system capabilities.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences microbiology bacteriology
- natural sciences biological sciences biochemistry biomolecules
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.4 - Digital, Industry and Space
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.4.2 - Key Digital Technologies
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL4-2022-DIGITAL-EMERGING-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
46022 Valencia
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.