Project description
Creating a self-resilient future for 6G cybersecurity
As the Internet of Things and digital technologies continue to proliferate rapidly, cybersecurity has become increasingly vital. However, despite its significance, cybersecurity encounters numerous challenges, ranging from adaptability to responsiveness to attacks. With this in mind, the EU-funded NATWORK project aims to address these challenges by developing an innovative, bio-inspired, AI-based 6G cybersecurity and resilience framework with low energy consumption. This framework will leverage AI and resilient biomimicry to enable networks to self-regulate and adapt to their specific circumstances while adhering to service level agreements. Furthermore, the gathered data will facilitate enhanced self-resilience and flexibility in future 6G network security measures.
Objective
The ambition of the NATWORK project is to set the foundations and deploy the very first economically realistic, energy efficient and viable bio-inspired AI-based 6G cybersecurity and resilience framework for intelligent networking and services, taking a holistic approach and considering all elements in a cross-sector business environment to address the diverse requirements and challenges that arise. The NATWORK project aims to develop a novel AI-leveraged self-adaptive security mechanism for 6G networks based on resilient bio-mimicry principles. The goal is to improve the malleability and the self-resilience of future 6G network ecosystems to offer augmented and secure services at the lowest energy costs. The principle premise is to empower various entities of 6G ecosystems with the ability to self-regulate their conditions to provide service continuity in compliance with service SLAs. The Secure Federated Learning architecture of NATWORK will be based on decentralized defensive AI models embedded in dis-aggregated 6G network physical layer, smart Edge Network Interface Cards and RAN devices with P4-based programmable data plane and advanced DPU acceleration, with local feature extraction at wire-speed and AI model training. Among the key 6G security challenges that NATWORK aims to alleviate are Moving Target Defense and adaptive response to incidents, the employment of Net Zero AI and energy-efficient security for sustainable networks, the Detection of new forms of attacks bearing deep control flow monitoring as well as the elaboration of a continuum of security for payload deployment fostering secure migration of novel forms of in-network operations and secure distributed computations.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences ecology ecosystems
- social sciences economics and business business and management employment
- natural sciences computer and information sciences computer security
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.4 - Digital, Industry and Space
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-JU-RIA - HORIZON JU Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-JU-SNS-2023
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
57 001 THERMI THESSALONIKI
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.