Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

QCD thermodynamics on the lattice

Objective

Quantum Chromodynamics (QCD) at finite temperature and non-zero density describes phenomena relevant to the early universe and heavy-ion collisions. The applicability of perturbation theory is limited to large temperatures and densities. We plan to use lattice simulations to study QCD thermodynamics. There are different regularizations of QCD on the lattice. The computationally most effective one is the staggered formulation, while Wilson or chiral fermions are theoretically more established. We have to distinguish studies at vanishing baryon densities from the ones concerning non-zero density. At vanishing densities the order of the QCD transition between the hadronic phase and the quark-gluon plasma was studied using staggered fermions. In the physical, continuum limit the transition was found to be a crossover. The transition temperature has also been determined. These studies should be and will be extended using Wilson and chiral fermions. This way the staggered results can be checked. At non-vanishing densities direct lattice simulations are prohibited by the infamous sign problem. Recently the multi-parameter reweighting method was developed to study moderate densities using simulations at zero baryon density. The phase diagram as well as the critical point of QCD was determined using staggered fermions with a single lattice resolution. We plan to extend these studies in two ways. In the first step finer lattices will be studied with staggered fermions and a continuum extrapolation will be attempted. In the second step Wilson and possibly chiral fermions will be used. At large densities where the sign problem is the most severe the density of states method will be used. Based on our experience with PC clusters we will build a new, high performance cluster to achieve these goals. The establishment of a strong new research group certainly will improve the competitivity of the European lattice community.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2007-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

EOTVOS LORAND TUDOMANYEGYETEM
EU contribution
€ 1 300 000,00
Address
EGYETEM TER 1-3
1053 BUDAPEST
Hungary

See on map

Region
Közép-Magyarország Budapest Budapest
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0