Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Title: Self-Renewal, Fate Potential and Plasticity of Human Embryonic and Induced Pluripotent Stem Cell-Derived Neural Stem cells

Objective

Neural stem cells (NSCs) can propagate in vitro while retaining ability to differentiate into neurons, astrocytes and oligodendrocytes. However, because of the nature of their developmental progression, NSCs isolated at different developmental stages or regions exhibit remarkable differences in their ability to yield specific neuron types. Specifically, NSCs grown in vitro rapidly lose access to the full neuronal spectrum. Limited NSC potential is one of the major impediments for applications in regenerative medicine, specifically for Parkinson’s and motoneuron-related diseases. Therefore, there is an enormous need to understand how NSCs self-renew.
Human embryonic stem cells (hESCs) are known to provide access to early neural fates. We have recently isolated a novel type of early NSCs derived from hESCs termed rosette-NSCs (R-NSCs), which respond to such regional patterning cues. We proved the unique NSC stage of R-NSCs based on their cytoarchitecture, marker expression, stem cell properties and differentiation potential. Nevertheless, we only partially identified growth requirements and signaling pathways governing the R-NSCs stage.
Here we would like to address these limitations by defining heterogeneity within R-NSCs and develop genetic strategies to prospectively isolate fully patternable R-NSCs. Generating transgenic hESC reporter lines will serve as reliable readout for defining R-NSC stage, identity and function, and will be used for establishing correlative genome-wide chromatin state and promoter methylation maps. Finally we will systematically probe function of extrinsic/intrinsic factors affecting R-NSC identity, neural patterning potential and epigenetic state. This should provide fundamental insights into the genetic/epigenetic mechanisms of neural patterning and ultimately result in novel conditions for the continued in vitro expansion of fully patternable R-NSC - a key step towards establishing a stable expandable universal NSC population.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2010-RG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

TEL AVIV UNIVERSITY
EU contribution
€ 100 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0