Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Star Formation and the Galactic Ecology

Objective

We will construct the first self-consistent models of star formation that follow the galactic scale flows
where molecular clouds form yet still resolve the star formation and feedback events down to sub-parsec scales.
By following the full galactic ecology, the life cycle of gas from the interstellar medium into stars and their radiative and kinematic output back into
the galaxy, we will develop a comprehensive theory of star formation. The link between the large-scale dynamics of the galaxy and the
small-scale star formation provides the ground-breaking nature of this proposal.
Star formation produces a wide range
of outcomes in nearby molecular clouds yet on large scales yields star formation rates that are strongly correlated to galactic-scale gas densities.
These observed properties of star forming galaxies have inspired a plethora of theoretical ideas, but until now there has been
no means of testing these analytical theories.
We will use galactic-disc simulations to determine how molecular clouds form through self-gravity, spiral shocks and/or
cloud-cloud collisions. We will use these self-consistent models of molecular clouds to follow the local gravitational collapse to
form individual stars and stellar clusters.
We will include ionisation, stellar winds and supernovae into the ISM to study how feedback can support
or destroy molecular clouds, as well as triggering successive generations of young stars.
We will also conduct Galactic bulge scale simulations to
model how gas flows into, and star formation occurs in, the Galactic centre.
The primary goals of this proposal are to understand what determines the
local and global rates, efficiencies and products of star formation in galaxies, and to develop
a complete theory of star formation that can be applied to galaxy formation and cosmology.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-ADG_20110209
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
EU contribution
€ 2 210 523,00
Address
NORTH STREET 66 COLLEGE GATE
KY16 9AJ St Andrews
United Kingdom

See on map

Region
Scotland Eastern Scotland Clackmannanshire and Fife
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0