Objective
The recent IPCC report identifies mineral dust and the associated uncertainties in climate projections as key topics for future research. Dust size distribution in climate models controls the dust-radiation-cloud interactions and is a major contributor to these uncertainties. Observations show that the coarse mode of dust can be sustained during long-range transport, while current understanding fails in explaining why the lifetime of large airborne dust particles is longer than expected from gravitational settling theories. This discrepancy between observations and theory suggests that other processes counterbalance the effect of gravity along transport. D-TECT envisages filling this knowledge gap by studying the contribution of the triboelectrification (contact electrification) on particle removal processes. Our hypothesis is that triboelectric charging generates adequate electric fields to hold large dust particles up in the atmosphere. D-TECT aims to (i) parameterize the physical mechanisms responsible for dust triboelectrification; (ii) assess the impact of electrification on dust settling; (iii) quantify the climatic impacts of the process, particularly the effect on the dust size evolution during transport, on dry deposition and on CCN/IN reservoirs, and the effect of the electric field on particle orientation and on radiative transfer. The approach involves the development of a novel specialized high-power lidar system to detect and characterize aerosol particle orientation and a large-scale field experiment in the Mediterranean Basin using unprecedented ground-based remote sensing and airborne in-situ observation synergies. Considering aerosol-electricity interactions, the observations will be used to improve theoretical understanding and simulations of dust lifecycle. The project will provide new fundamental understanding, able to open new horizons for weather and climate science, including biogeochemistry, volcanic ash and extraterrestrial dust research.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences earth and related environmental sciences geology sedimentology
- natural sciences physical sciences astronomy planetary sciences asteroids
- natural sciences physical sciences astronomy planetary sciences natural satellites
- natural sciences earth and related environmental sciences atmospheric sciences climatology
- natural sciences earth and related environmental sciences geochemistry biogeochemistry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
11 810 ATHINA
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.