Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Improving global dust prediction and monitoring through data assimilation of satellite-based dust aerosol optical depth

Objective

DUST-GLASS aims at improving global dust prediction and monitoring by optimizing an advanced data assimilation system (LETKF scheme) coupled with a sophisticated atmospheric-dust model (NMMB/BSC-Dust). For the accomplishment of these core scientific goals, a fine resolution (0.1o x 0.1o) global dust optical depth (DOD) database, suitable for data assimilation, will be developed via a synergy of state-of-the-art Level 2 satellite retrievals acquired by MODIS, MISR and OMI sensors (2007-2016). The impacts of assimilating this novel dataset (DOD) on model’s predictive skills, both at global and regional scale, will be assessed objectively. Global forecasts (5 days) will be carried out for different periods aiming at studying dust aerosols’ mobilization and transport from the major dust sources of the planet, while a global reanalysis (0.5o x 0.7o) dataset will be generated for long-term dust monitoring. In addition, regional short-term (84 hours) forecasts will be conducted for 20 Mediterranean dust outbreaks identified by a satellite algorithm in the framework of the MDRAF project (fellow’s previous MC-IEF). In the evaluation analysis, the model’s dust outputs will be compared versus measurements derived by ground networks (AERONET, MAN, ACTRIS) as well as against columnar/vertical satellite retrievals (MODIS, MISR, CALIOP). Moreover, temperature and radiation will be also considered since “corrections” on dust fields, thanks to data assimilation, are expected to be evident on both parameters due to dust-radiation interactions. The aforementioned variables will be compared against observations obtained by ground networks (ISB, RAOB, BSRN) and reanalysis/analysis products (ERA-Interim, FNL). Considering the multifaceted role of dust, the scientific outcomes of DUST-GLASS are expected to contribute effectively to interdisciplinary studies regarding dust aerosols as well as their associated impacts on health, anthropogenic activities, environment, weather and climate.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2016

See all projects funded under this call

Coordinator

ETHNIKO ASTEROSKOPEIO ATHINON
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 164 653,20
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 164 653,20
My booklet 0 0